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Abstract
Several factors describe the broad pattern of diversity in plant species distribution. We 
explore these determinants of species richness in Western Himalayas using 
high-resolution species data available for the area to energy, water, physiography and 
anthropogenic disturbance. The floral data involves 1279 species from 1178 spatial 
locations and 738 sample plots of a national database. We evaluated their correlation 
with 8-environmental variables, selected on the basis of correlation coefficients and 
principal component loadings, using both linear (structural equation model) and non-
linear (generalised additive model) techniques. There were 645 genera and 176 fami-
lies including 815 herbs, 213 shrubs, 190 trees, and 61 lianas. The nonlinear model 
explained the maximum deviance of 67.4% and showed the dominant contribution of 
climate on species richness with a 59% share. Energy variables (potential evapotran-
spiration and temperature seasonality) explained the deviance better than did water 
variables (aridity index and precipitation of the driest quarter). Temperature seasonal-
ity had the maximum impact on the species richness. The structural equation model 
confirmed the results of the nonlinear model but less efficiently. The mutual influences 
of the climatic variables were found to affect the predictions of the model signifi-
cantly. To our knowledge, the 67.4% deviance found in the species richness pattern is 
one of the highest values reported in mountain studies. Broadly, climate described by 
water–energy dynamics provides the best explanation for the species richness pat-
tern. Both modeling approaches supported the same conclusion that energy is the 
best predictor of species richness. The dry and cold conditions of the region account 
for the dominant contribution of energy on species richness.
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1  | INTRODUCTION

Several factors describe the broad pattern of diversity in plant species 
distribution of which climate is a critical factor (Currie, 2004) at a re-
gional scale (Ricklefs, 1987) and in tropical forests (Clark et al., 1999). 

The water–energy dynamics hypothesis explains the mechanism of 
climatic control and the positive relationships that ambient energy 
availability and water have with species richness (O’Brien, 1993). The 
energy hypothesis explains energy partitioning among species where 
greater availability of energy in a usable form supports more species 
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(Turner, Gatehouse, & Corey, 1987). In general, there is a proven high 
positive correlation between energy and species richness in cold cli-
mates. However, there are variations in these relationships in warm 
conditions (Francis & Currie, 2003; Kreft & Jetz, 2007). Water is an es-
sential solvent for all physiological activities in plants and determines 
species patterns in the tropics, subtropics, and warm temperate zones 
(Hawkins et al., 2003). The scarcity of water adversely affects plant 
species richness in arid climates (Li et al., 2013). Water, energy, and 
their dynamics determine plant richness at high latitudes and explain 
more than 60% of the variations found in plant/animal species rich-
ness (Hawkins et al., 2003). However, the individual contributions of 
water and energy vary within regions. Vetaas and FerrerCastán (2008) 
observed that energy exerts greater control than does precipitation 
over the woody plants of the Iberian Peninsula. In contrast, Hawkins, 
Diniz-Filho, Jaramillo, and Soeller (2006) demonstrated a stronger 
influence of precipitation relative to energy in high to mid-latitudes.

Physiography describes the geographic complexity and regulates 
species diversity at both local and regional scales (Moeslund, Arge, 
Bøcher, Dalgaard, & Svenning, 2013). Several physiographic variables 
are used to quantify its impacts on species richness. Elevation reg-
ulates species richness by controlling the effects of climate and soil 
(Day & Monk, 1974), and it strongly influences the vegetation of most 
mountain ecosystems (Zhang et al., 2009). The terrain ruggedness 
index obtained by the differences between the elevation values of ad-
jacent cells relative to a central cell (Riley, Hoppa, Greenberg, Tufts, 
& Geissler, 2000) describes the impacts of heterogeneity in species’ 
niche differentiation (Whittaker, Levin, & Root, 1973). Aspect distrib-
utes the solar radiation affecting the microclimate and vegetation at a 
local scale (Kirkby et al., 1990). Slope correlates with the spatial pat-
tern of tree species by controlling solar radiation (Bianchini, Garcia, 
Pimenta, & Torezan, 2010).

Disturbance is a critical factor for community composition and di-
versity in the species-rich landscapes of Western Himalaya (Kharkwal, 
2009). Roy et al. (2002) used patch density, porosity, fragmentation, 
and juxtaposition to assess the disturbance regime of the region. 
Sharma, Gairola, Ghildiyal, and Suyal (2009) found a positive cor-
relation between poor socio-ecological status of villagers and fuel-
wood collection in the temperate forests of the Garhwal Himalaya. 
Overgrazing is reported to be another factor in the alpine grasslands 
of the Tibetan plateau (Yu et al., 2012). Both the human appropria-
tions of net primary productivity and the global human footprint index, 
which assess the intensity of human intervention in ecosystems and its 
sustainability, have been used as socio-ecological indicators. Crowther 
et al. (2015) studied the effects of these variables to quantify human 
interference when mapping tree density at a global scale. Here, we 
emphasize their influence to monitor impacts of human disturbance 
on species richness. This has never been attempted previously in 
Western Himalayan studies.

Western Himalaya is geomorphologically complex with an altitu-
dinal extent of >8,000 m. Its rich species diversity is broadly charac-
terized by physiography, climate, soil, and anthropogenic disturbance 
(Shah et al., 2011). Its biogeography is climatologically distinct. It lies in 
a rain shadow region and receives little rainfall (Singh & Singh, 1987). 

Western Himalaya gets rainfall during winter due to nonmonsoonal 
precipitation of westerlies. Overall, a temperate climate prevails. 
However, the region experiences a broad range of temperature and 
precipitation anomalies with a mean annual temperature of ca. 5°C 
and annual precipitation of 2,500 mm (Chitale, 2014). The southern 
parts of the region are species-rich. For example, the angiosperm di-
versity of Himachal Pradesh comprises about 19,395 species or 7% 
of the world total (Karthikeyan, 2000). In contrast, the northern part 
is species poor due to the very low rainfall it receives (10–70 mm) 
and extremely cold temperature (≤45°C). The published literature fo-
cuses on the species diversity, community structure, and distribution 
pattern of its different forest types (Khan, Page, Hahmad, & Harper, 
2013; Shaheen, Khan, Harper, Ullah, & Allem Qureshi, 2012; Sharma, 
Rana, Devi, Randhawa, & Kumar, 2014; Singh, 2008). Some studies 
have been carried out on species–environment relationships in adja-
cent areas (Oommen & Shanker, 2005; Wang, Tang, & Fang, 2007; Yan, 
Yang, & Tang, 2013). However, no specific study has been performed 
in Western Himalaya due to nonavailability of floral data. In this study, 
we took advantage of a scientifically designed national database to in-
vestigate the influence of the abiotic environment on species richness. 
Understanding high species richness in a dry and cold climate of the 
understudied Himalaya remains interesting, and little research has fo-
cused on disentangling the effects of abiotic and human impacts. This 
study may provide better insights into ecologists and planners dealing 
with plant distribution patterns vis-à-vis climate change projections.

In this study, we explored the determinants of species richness in 
Western Himalayas. We used high-resolution species data available 
for the area to energy, water, physiography, and anthropogenic distur-
bance to explain distribution of species richness. Because of geomor-
phological complexity, we expected a greater control of physiography 
on the species richness. The general dry and cold conditions of the 
area may posit significant impacts of water and energy on species dis-
tribution. We speculate anthropogenic disturbance has some control 
on the plant richness because of the proximity of the region to densely 
populated areas. We applied predictive models to assess the influ-
ences of environmental variables and human impact on the species 
richness.

2  | METHODS

We selected two Indian Himalayan states, Himachal Pradesh and 
Uttarakhand (28.5–33°N and 75.5–82°E), for the study (Figure 1). We 
obtained plant species richness data from a national database devel-
oped during the project “Biodiversity Characterization at Landscape 
Level” (bis.iirs.gov.in). The field sampling involving all the forest classes 
was carried out using a stratified random sampling approach for the 
vascular plant species richness (Roy et al., 2012). A nested quadrat 
of 20 × 20 m was laid for trees or lianas, which accommodated two 
5 × 5 m quadrats for shrubs/saplings and five 1 × 1 m quadrats for 
herbs/seedlings (Figure 1). We gathered data pertaining to 27 vari-
ables under three categories, viz. climate (21 variables), physiography 
(four variables), and human disturbance (two variables) from different 

http://bis.iirs.gov.in


     |  3PANDA et al.

public domain sources (Appendix S1). We obtained 19 climate vari-
ables from the Worldclim site, along with two variables from CGIAR_
CSI (http://www.cgiar-csi.org/), all computed for the period from 
1950 to 2000 (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; Zomer, 
Antonio, Deborah, & Louis, 2008). We obtained physiographic vari-
ables (elevation, slope, and aspect) from the GMTED2010 database 
(https://lta.cr.usgs.gov). We derived the terrain ruggedness index 
from the differences of the elevation values of adjacent cells relative 
to a central cell. We procured the human appropriation of net primary 
productivity (Imhoff et al., 2004) and global human footprint (WCS-
CIESIN, 2005) values from the SEDAC database (http://sedac.ciesin.
columbia.edu/). The spatial resolution of each of the 27 variables was 
approximately 1 km2. The data conformed to WGS’84 projection. We 
extracted the data corresponding to 1,178 species locations using 
ArcGIS 10 for regression analysis (see Appendix S1).

Spatial autocorrelation describes the dependencies between ob-
served samples and bias due to clustering, which can be quantified 
using Moran’s I index (Moran, 1950). Principal component analysis 
(PCA) was used to select the best among correlated predictors (Xu, 
Wang, Rahbek, Sanders, & Fang, 2016). We computed Moran’s I index 
of the floral data using the package “ape” in RStudio (Paradis, Claude, 
& Strimmer, 2004). We performed a multicollinearity test through hier-
archal clustering analysis using the package “corrplot” in RStudio (Wei 
& Simko, 2016). We used PCA to examine the loadings of each collin-
ear variable of the different categories separately and to pick a few 
least-correlated variables from each category for further analysis. We 
performed simultaneous centering and scaling to nullify the skewness 

effect. We performed PCA using the package “caret” in RStudio (Abdi 
& Williams, 2010). We calculated the percentage absolute weight of 
each variable corresponding to each principal component (PC) axis by 
multiplying the percentage variance explained by each axis with the 
absolute weight of each variable corresponding to that PC axis. We 
added the values of the first three PC axes, picked up the variable 
with the maximum weight, and removed its collinear partners (R > 0.8). 
We continued this process and finally selected the top eight variables. 
These include four climate (two energy and two water variables), two 
physiography and two disturbance variables. As two disturbance vari-
ables were noncollinear, we selected them directly without PCA. We 
examined the multicollinearity between the selected variables further 
to cross-check whether they satisfied correlation criteria (R < 0.8).

Several species distribution models (SDMs) deal with linear or 
nonlinear species–environment relationships. We selected the gen-
eralized additive model (GAM) for its robustness and proficiency in 
predicting species richness pattern (Hastie & Tibshirani, 1990). GAM 
fits smooth functions to establish nonlinear relations between species 
and the environment (Vetaas & FerrerCastán, 2008). The cubic spline 
smoother reduces the curvature and straightens curves fitted with 
large values and vice versa. The tensor product smoothing function 
scales anisotropic parameters of different units and improves the per-
formance of models with interactive terms. GAM provides sufficient 
flexibility to choose smoothing parameters and is capable of fitting 
several prediction error criteria to control overfitting. Generalized 
cross-validation (GCV) and generalized (approximate) cross-validation 
(GACV) are preferred prediction error criteria. These error prediction 

F IGURE  1  (a) Indian Parts of Western 
Himalaya. (b) Study area showing two 
Indian states with nested quadrat locations. 
(c) Design of a nested quadrat
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criteria apply appropriate smoothness to model terms to minimize the 
GCV or GACV score, and, thereby, maximize the performance of the 
models. GAM quantifies complex species–environment relationships 
and reliable to fit local species occurrences (Aguirre-Gutiérrez et al., 
2013). On the other hand, the structural equation model (SEM), a lin-
ear regression technique is often used to validate the output of an-
other model such as GAM (Wu, Wurst, & Zhang, 2016). It establishes 
causal relationships between multiple predictors and response vari-
ables within a single framework (Grace, 2006).

We used GAM to find relationships between species richness and 
the eight selected variables both at independent and at cumulative levels 
with/without interaction(s). We fitted GAM with a Poisson error distri-
bution with a “log” link function using the package “mgcv” in RStudio 
(Wood, 2016). We fitted the cubic spline (s) smoother to variables with-
out interactive terms and the tensor product (te) smoother to interactive 
terms. We selected GCV (GCV.Cp) as prediction error criterion, which 
automatically selects models with the least error and improves the 
explanatory ability of models. The significance of each predictor was 
quantified using the deviance (%) [calculated as (null deviance—residual 
deviance/null deviance) × 100]. The data were split into four groups, and 
then, 1 group was held out and the model fit to the other three groups 
combined, that model then test on the held-out group to get the perfor-
mance. This process was repeated, with each of the four groups acting as 
the held-out group, and overall R2 taken as an average across all held-out 
groups. We used the package “lavaan” in RStudio for SEM to examine 
the performance of the GAM predictions (Rosseel, 2012). We derived 
structural equations for a different set of variables and categories and 
plotted them in figures wherein different colors were assigned to repre-
sent positive/negative correlation, and the thickness of arrows explained 
the impact of independent variables on the dependent variable (Figure 
3). The physiography, climate, and disturbance variables were grouped, 
and a separate SEM was fitted for each group. Further, we plotted the re-
sponse curves of four climate variables to analyze the multidimensional 
regression through a two-dimensional representation (Figure 4).

3  | RESULTS

The two states of Western Himalaya have 1,279 species (sp.) in 645 
genera and 176 families. These include 815 herbs, 213 shrubs, 190 
trees, and 61 lianas, with species with missing information excluded (see 
Appendix S2). The family Poaceae is the largest family, with 141 species. 
The other dominant families are Asteraceae (119 sp.), Papilionaceae (70 
sp.), Rosaceae (56 sp.), Polygonaceae (43 sp.), and Lamiaceae (40 sp.). 
Polygonum (21 sp.) is the most speciose genus. Potentilla (17 sp.), Carex (14 
sp.), Impatiens (14 sp.), Dryopteris (13 sp.), and Artemisia (13 sp.) are other 
prominent genera. Moran’s I value for the 1,178 spatial location points of 
the 738 sample plots was 0.39 at the p < .001 level of significance.

The first three PC axes of the climate variables explained 61.77%, 
17.95%, and 9.08% variance, respectively. They cumulatively explained 
>91.8% variance, and the percentage absolute weight of each variable 
varies between 11.39% and 20.49%. We found at least three sets of col-
linear variables (Appendix S3). One set of variables was led by potential 

evapotranspiration (PET) with the maximum percentage absolute weight 
(20.48%), which showed a very strong correlation (R > 0.9) with the mean 
annual temperature, temperature of the coldest month, temperature of 
the coldest quarter, temperature of the driest quarter, temperature of 
the wettest month, temperature of the wettest quarter, and temperature 
of the warmest quarter, and a strong correlation (R > 0.8) with precipita-
tion seasonality and temperature of the wettest quarter (Appendix S4). 
The second set of variables was led by the aridity index, which showed 
a strong correlation (R > 0.8) with the mean annual precipitation, precip-
itation of the wettest month, precipitation of the wettest quarter, pre-
cipitation of the warmest quarter. Temperature seasonality led the next 
set of variables, which exhibited a very strong correlation with the tem-
perature annual range and a strong correlation with the annual precipi-
tation, precipitation of the warmest month, precipitation of the warmest 
quarter, precipitation of the wettest quarter, temperature of the coldest 
month, and temperature of the coldest quarter. The precipitation of the 
driest quarter was the fourth climatic variable selected after elimination 
of collinear variables (Appendix S4). The first three axes of the phys-
iographic variables explained 48.8%, 26.2%, and 16.1% variance, re-
spectively. Together they explained >91% variance, and the percentage 
absolute weight of these variables lies between 36.48% and 44.77%. 
The mean elevation is shown to have the maximum percentage absolute 
weight (44.77%), followed by slope (41.35%), terrain ruggedness index 
(38.41%), and aspect (36.48%). None of these physiographic variables 
were strongly correlated with each other (Appendix S4). However, the 
mean elevation was not considered for its strong correlation with se-
lected climatic variables (Figure S1; Appendix S4). The percentage abso-
lute weights of slope and terrain ruggedness index were next to those 
of the mean elevation. They showed no strong correlation with the se-
lected variables of other categories of variables and, therefore, selected 
for modeling. The eight least-correlated variables two each from energy, 
water, physiography, and disturbance: aridity index, human appropria-
tion of net primary productivity, global human footprint, precipitation of 
the driest quarter, PET, slope, terrain ruggedness index, and temperature 
seasonality were finally selected for modeling (Figure 2).

The study area was found to have a mean aridity of 0.13. The dry-
ness of the northwest is greater than that of the southeast of the region. 
The mean precipitation in the driest quarter was 101.8 mm. The central 
and northwestern regions get the maximum precipitation during this 
quarter. The mean PET was 994 mm. It was found to decrease along 
the elevation gradient monotonously. The mean human appropriation 
of net primary productivity was well below average (24.73 PgC/year) 
except in the southwestern parts of the study area, where the popula-
tion density is high. On the other hand, the mean global human foot-
print was medium to above average across the study area (31.76/ha). 
The minimum and the maximum elevations were 207 m and 5,468 m, 
respectively. The mean terrain ruggedness index was high, at 656.86, 
whereas the mean slope was low, at 11.2°. Both showed similar spatial 
variations along the elevation gradient, that is, high ruggedness and 
slope were greater at higher elevations. All the selected variables were 
within the accepted level of skewness (Appendix S4).

The multimodel inference produced 45 combinations of vari-
ables (i.e., models; Tables 1 and 2). Fifteen noninteractive variable 
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combinations were found to be significant for species richness pattern 
(Table 1). Except in a few cases, each variable within the models was 
significant at p < .001. Although some variables were insignificant, the 
p-values of all the baseline SEM models were significant (p < .001). In 
GAM, no variable was found to be insignificant, and all cross-validation 
results were significant at the p < .05 level at least (Table 1). Both ap-
proaches diagnosed the independent and cumulative effects of the 
energy variables to be significant for the species richness pattern. 
The temperature seasonality was the best predictor of species rich-
ness, and PET was the second-best predictor. The best GAM model 
explained 43% variance by cross-validation, whereas the best SEM 
model described 38% variance of species richness. SEM predicted the 
cumulative effects of water and disturbance at par with climate, that 
is, at 38%.

The best two SEM model predictions are as follows: 

AI = Aridity index; HF = human footprint; HNP = human appropri-
ation of net primary productivity; PDR = precipitation of driest quar-
ter; PET = potential evapotranspiration; TS = temperature seasonality.

Interestingly, the percentage deviance explained by each GAM 
model was not proportionate with the cross-validation results. For 
example, the most complex combination of climate and disturbance 
which described the maximum deviance, at 58.6%, was the second-
best model. The SEM model predictions showed better correlation 
with the deviance explained by GAM. Unlike GAM cross-validation 
results, the best SEM model explained the maximum deviance.

Structural equation model predicted negative relationships between 
the aridity index and temperature seasonality with species richness. 
The precipitation of the driest quarter and PET were found to have pos-
itive correlations with species richness. The global human footprint and 
human appropriation of net primary productivity showed weak posi-
tive and weak negative correlations with species richness. Slope and 
terrain ruggedness index were found to have weak negative and weak 
positive correlations with species richness, respectively (Figure 3). The 
response curves of GAM models showed trends similar to those of the 
SEM predictions. The piecewise polynomial curves were closely fitted 
with low degrees of freedom (7—9), that is, they neither straight nor 
wiggled. The aridity index had a linear and upward trend, but it became 
more or less straight after an index value of 0.10. Its variation from the 
mean zero level was found to be insignificant (Figure 4a). In contrast, 
the precipitation of the driest quarter exhibited an irregular curve pat-
tern and differed greatly from the mean zero level. It showed a general 
positive trend with species richness (Figure 4b). PET showed a greater 
variation from the mean zero level and a positive relationship with spe-
cies richness (Figure 4c). Temperature seasonality showed a complex 
curve pattern and was negatively correlated with species richness after 
approximately 625 CofV from the mean zero level (Figure 4d).

Structural equation model showed better goodness of fit with 
interactions. The latent variables (groups of common predictors) 
were found to influence the species richness better compared with 
the combined effect of independent variables of the same groups 
(Table 1). The best model involving latent variables described 41% 
variance, the maximum predicted by any SEM model. The influences of 
physiography and disturbance with groups of common climatic predic-
tors fitted better than their influences with separate groups of water 
and energy predictors (Figure 3). GAM exhibited similar relationships, 
that is, enhanced performance with inclusion of interactive terms in 
the models. The performance of models improved with complexities. 
The full model with a combination of all selected variables described 
the maximum deviance of 65.7% (Table 2). With climate, physiography 
showed greater significance than did disturbance. The deviance ex-
plained by common predictors of any two sets of variables with inclu-
sion of interactive terms was between 52.8% and 62.1%, and the base 
climate model explained the deviance to the extent of 62.1%. In gen-
eral, the inclusion of interactive terms of common predictors with non-
interactive terms enhanced the percentage of the explained deviance. 
With inclusion of interactive terms, the deviance explained by energy 
was 54.7%, a 5% greater value than the deviance explained by water. 
Comparatively, the interactions between the disturbance variables ex-
plained more deviance than did the physiographic variables (Table 2).

4  | DISCUSSION

The dominant presence of herbaceous plant families, specifically 
Poaceae, Asteraceae, and Rosaceae, indicates the prevalence of grass-
land vegetation in the area. Similar familial relationships have also 
been reported by Rashid et al. (2012) in biodiversity-rich areas of the 
northern Himalaya with predominantly grassland vegetation.

(1)Water+Disturbance

SR =14.690 + 0.148 ∗ HF−0.271 ∗

HNP + 0.479 ∗ AI + 0.399 ∗ PDR

(2)Climate (Water+Energy)

SR =12.194 + 0.112 ∗ AI + 2.796 ∗ PDR+

2.849 ∗ PET−1.704 ∗ TS

F IGURE  2 Correlation plot
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Analyzing relationships of plant species richness with climate, 
disturbance, and physiography using both GAM and SEM allows us 
to compare the relative importance of abiotic predictors in describ-
ing the variations in the dry and cold Western Himalaya. Both models 
indicate a significant contribution of climate to the species richness 
pattern. Our results corroborate the findings of Chitale (2014), who 
reported that Himalayan ecology is broadly defined by climate. Several 
studies describe strong relationships between climate and species 
richness (Clark et al., 1999; Curie et al., 2004; Hawkins et al., 2003; 
Ricklefs, 1987; Wang et al., 2007). Our results show the key roles of 
the water–energy dynamics in climatic control in explaining the ca-
pacity of species richness (O’Brien, 1993; O’Brien, Whittaker, & Field, 
1998). The energy variables, that is, temperature seasonality and PET, 
are the most significant determinants of species richness patterns. The 
prevailing cold and dry conditions of the area might have led to the 
strong biotic dependency on energy. Many ecologists agree that en-
ergy has greater control in cold climates (Francis & Currie, 2003; Kreft 
& Jetz, 2007). The energy hypothesis proposes that greater availability 
of energy in a usable form enhances the species richness (Turner et al., 
1987). The water variables show a strong association with species 
richness, but with a relatively lower magnitude compared with the en-
ergy variables. Water is an essential solvent for richness patterns in the 
tropics, subtropics, and warm temperate zones (Hawkins et al., 2003). 
However, our results contradict with the findings of Hawkins et al. 
(2006), who demonstrated a stronger influence of precipitation com-
pared with energy in high to mid-latitudes. The geographic position 

and evolutionary history of the area might have shaped this water and 
energy transitions with reference to species richness (Xu et al., 2016). 
The species–energy affinities may be associated with Himalaya’s 
youthful physiography and unstable geology (Mani, 1974). Although 
water and energy contribute differently to the species richness pat-
tern, their synergy defines the mechanism by which the contemporary 
climate affects the species richness pattern. Water stress negatively 
affects species richness in spite of availability of sufficient energy, and 
with optimum water availability, plants would exploit the maximum 
photon flux essential for their physiological activities.

Water–energy variables and their interactions have primacy 
over anthropogenic disturbance and physiography. Independently, 
energy and water variables have primacy over nonclimatic variables. 
The temperature seasonality is the greatest contributor, which in-
dicates a significant influence of seasonal variation in temperature 
on the species richness. This variable exhibits complex, but negative 
correlations with species richness. This explains why the ecological 
stability of the region is balanced by fluctuations in temperature, 
and a global rise in temperature would be significant in controlling 
plant richness in future climates. PET is the second-best predictor of 
plant richness. It is a crucial factor in the Himalayan region (Chitale, 
2014). PET has been reported to be the best predictor of the species 
richness pattern (O’Brien, 1993). A low level of PET shows positive 
relationships with the species richness. However, PET saturates 
at above 900 mm with no significant variations indicating the in-
direct influence of elevation on the species richness pattern. The 

Model Formula SEM_R2 GAM_R2
% Deviance 
explained

M13 SR~s(PET) + s(TS) 0.30(0.39) 0.45 48.5

M22 SR~s(AI) + s(PDR) + s(PET) + s(TS) 0.38(nr) 0.43 54.8

M24 SR~s(HF) + s(HNP) + s(AI) + s(PDR) + 
s(PET) + s(TS)

0.31(0.37) 0.42 58.6

M20 SR~s(HF) + s(HNP) + s(AI) + s(PDR) 0.38(0.41) 0.41 53.9

M21 SR~s(HF) + s(HNP) + s(PET) + s(TS) 0.32(0.36) 0.41 52.6

M8 SR~s(TS) 0.27 0.40 44.8

M19 SR~s(SLP) + s(TRI) + s(PET) + s(TS) 0.35(0.38) 0.40 52.2

M18 SR~s(SLP) + s(TRI) + s(AI) + s(PDR) 0.31(nr) 0.38 50.2

M11 SR~s(AI) + s(PDR) 0.29(0.34) 0.37 45.6

M5 SR~s(AI) 0.25 0.35 41.2

M7 SR~s(PET) 0.26 0.34 35.6

M6 SR~s(PDR) 0.21 0.30 34.8

M10 SR~s(HF) + s(HNP) 0.18(0.29) 0.23 26.0

M3 SR~s(HF) 0.12 0.17 19.2

M4 SR~s(HNP) 0.14 0.17 16.9

SR, Species richness; PET, potential evapotranspiration; AI, aridity index; PDR, precipitation of the 
driest quarter; TS, temperature seasonality; SLP, slope; TRI, terrain ruggedness index; HNP, human  
appropriation of net primary productivity; HF, global human footprint.
In SEM, some variables predicted insignificant (p > .05) are highlighted. HF and PET of M21 were sig-
nificant at p < .05 and p < .01, respectively, for the same model; in GAM, HF of M20, M21, and M24 
models was significant at p < .05, p < .05, and p < .01, respectively. “nr” indicates “no results”; The R2 
values the proportion of variance explained in the held-out group in the cross-validation.

TABLE  1 Regression statistics for 
variable combinations without interactive 
terms using both structural equation model 
(SEM) and generalized additive model 
(GAM); results of GAM were computed 
using repeated cross-validation; except in 
few cases, the p value of each variable 
within the models was significant at 
p < .001. Both approaches supported the 
same conclusion that energy (temperature 
seasonality and potential 
evapotranspiration) was the best predictor 
of species richness, and the mutual 
influence of common predictors is more 
significant than their cumulative effects
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monotonous decrease in PET along elevation gradient probably 
explains this conjecture. The aridity index is the best-contributing 
water variable, which explains the impact of water stress on the 
species richness. This index was a crucial factor in an arid climate 
(Li et al., 2013). To a certain extent, dryness may facilitate species 
richness, but an index value >0.10 is probably counterproductive for 
plant richness. In general, a positive relation between the precipi-
tation of the driest quarter and species richness is predicted. It is 
likely that species in places of high mean dryness face greater stress 
due to water deficiency during the driest quarter. In contrast, dry 
northwestern parts of the study area get the maximum precipitation 
during the driest quarter, which might have reduced the adverse ef-
fect of dryness on species richness. Anthropogenic disturbance has 
a key role in determining the species richness pattern of Western 
Himalaya (Gupta, 1978; Kharkwal, 2009; Negi et al., 2012; Shrestha 
et al., 2012). The two disturbance variables could explain the spe-
cies richness almost equivalently. However, human appropriation 
of net primary productivity has a positive correlation with species 
richness, whereas global human footprint has a negative correlation. 
This indicates that some level of disturbance is favorable for increas-
ing species richness. The negative impact of global human footprint 
indicates that frequency of human interference may adversely af-
fect the species diversity of the region. Although the correlation 
between global human footprint and species richness is weak, it is 
likely to have a significant influence in the regions of high population 

density. The mean human appropriation of net primary productivity 
in the southwestern region and the mean global human footprint at 
flat elevated surfaces indicate anthropogenic disturbance in high-
populated areas. The areal proximity and dominant grassland veg-
etation might have increased the human impact of these regions. 
Sharma et al. (2009) described the positive correlation between fuel 
wood collection and forest dependence on forests of villagers to 
their poor socio-ecological status.

We found physiography to be a weaker predictor of species 
richness compared with disturbance. This contradicts the finding 
of Chitale (2014) that physiography is a better predictor compared 
with anthropogenic disturbance in the Himalaya. The selection of 
variables might be the most important reason for this difference. 
Exclusion of elevation from the list of selected variables may be the 
most plausible reason for the disparities. The very strong correlation 
between the mean elevation and PET describes the indirect influ-
ence of elevation on species richness. Their negative relationship 
is indicative of decreasing species richness along the elevation gra-
dient. An indirect association of elevation on species richness by 
controlling the climate and soil has been reported (Day & Monk, 
1974). Elevation has the strong influence on the vegetation in 
most mountain ecosystems (Zhang et al., 2009). The enhancement 
of the performance of the model upon addition of physiographic 
variables to climatic predictors probably explains the influence of 
physical heterogeneity on species’ niche differentiation (Whittaker 

Model Formula
% Deviance 
explained

M45 SR~s(HNP)* + s(HF) + te(HNP,HF) + s(SLP) + s(TRI) + te(SLP, TRI) +  
s(AI) + s(PDR) + te(AI,PDR) + s(PET) + s(TS) + te(PET,TS)

67.4

M43 SR~s(SLP) + s(TRI) + te(SLP, TRI) + s(AI) + s(PDR) + te(AI,PDR) +  
s(PET) + s(TS) + te(PET,TS)

63.7

M44 SR~s(HNP) + s(HF)*** + te(HF,HNP)*** + s(AI) + s(PDR)*** +  
te(AI,PDR) + s(PET)  + s(TS) + te(PET,TS)

63.3

M36 SR~s(AI) + s(PDR) + te(AI,PDR) + s(PET)* + s(TS) + te(PET,TS) 62.1

M41 SR~s(HF) + s(HNP)** + te(HF,HNP) + s(PET) + s(TS) + te(PET,TS) 60.1

M38 SR~s(AI) + s(PDR)*** + s(PET) + s(TS) + te(AI,TS) + te(PDR,PET) 60.0

M37 SR~s(AI) + s(PDR) + s(PET) + s(TS) + te(AI,PET) + te(PDR,TS) 59.0

M39 SR~s(SLP) + s(TRI) + te(SLP, TRI) + s(PET) + s(TS) + te(PET,TS) 58.9

M42 SR~s(HF)*** + s(HNP) + te(HF,HNP)** + s(AI) + s(PDR) + te(AI,PDR) 56.2

M35 SR~s(PET) + s(TS) + te(PET,TS) 54.7

M40 SR~s(SLP) + s(TRI)* + te(SLP, TRI) + s(AI) + s(PDR)** + te(AI,PDR) 52.8

M34 SR~s(AI)*** + s(PDR) + te(AI,PDR) 49.7

M31 SR~te(PET,TS) 47.5

M30 SR~te(AI,PDR) 44.0

M33 SR~s(HNP) + s(HF) + te(HNP,HF) 32.4

M29 SR~te(HF,HNP) 27.1

M32 SR~s(SLP) + s(TRI) + te(SLP,TRI)*** 10.6

M28 SR~te(SLP,TRI) 7.8

Variables highlighted are not statistically significant. “**,” “*,”and “***” indicate significance at p < .01, 
p < .05, and p < .1, respectively.

TABLE  2 Generalized additive 
model-derived regression statistics for 
models with interactive terms; models 
M28–M45 are variables combinations with 
interactive terms. Cubic spline smoother(s) 
fitted to noninteractive terms and tensor 
product (te) smoother to interaction terms; 
except in few cases, the p value of each 
variable within the models was significant 
at p < .001
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et al., 1973). Slope is found to be weak predictor in describing the 
plant richness pattern. This probably explains the influence of the 
dominant grassland vegetation of the study area, which set the mi-
croclimate for herbaceous plants. It differs in describing positive re-
lationships between slope and tree species (Bianchini et al., 2010). 
Slope is reported to be a key factor in determining the vegetation 
at a local scale (Kirkby et al., 1990), but it may not be a significant 
factor at the landscape or regional scale.

The explanatory power of the models improved significantly with 
inclusion of interactive terms (Table 2). Interactions between common 
predictors showed proportionate variations relative to base models 
and with greater efficiency, that is, energy>water>disturbance>phys-
iography. This indicates that mutual influences of common predictors 
on the species richness are more significant than their independent 

effects. Climatic variables show a greater synergy with each compared 
with nonclimatic variables. The SEM results substantiate GAM predic-
tions. The mutual influences of common predictors (i.e., latent vari-
ables) are more significant than the cumulative effects of independent 
predictors. This indicates that multiple parameters act synergistically 
to shape the species richness pattern. The competence of the linear 
structural model is equivalent to that of the nonlinear model, but with 
low efficiency. It describes that species and environment relationships 
are more likely to be nonlinear than to have linear fit. In general, both 
models identified climate has the primacy in determining the species 
richness pattern. The energy variables, that is, temperature seasonality 
and PET, are the most significant determinants of the species richness 
pattern. The interactions between climatic variables are more critical 
than those of nonclimatic variables. The overall explanatory ability 

F IGURE  3  (a) Effects of physiography and water on species richness. (b) Effects of physiography and energy on species richness. (c) Effects of 
disturbance and water on species richness. (d) Effects of disturbance and energy on species richness. (e) Effects of energy and water on species 
richness

(0.31)

(a)

(0.35)

(b)

(0.38)

(c)

(0.32)

(d)

(0.38)

(e)
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improves with the complexity of the model, and a full model with all 
variables and their corresponding interactive terms could explain a 
maximum deviance of 67.4%.

5  | CONCLUDING REMARKS

This study used a newly available national biodiversity database for 
India to explore species–environment relationships in two states 
in Western Himalaya on the basis of environmental variables and 
human impact. With GAM and SEM models including climatic, phys-
iographic, and anthropogenic variables, energy variables, that is, 
temperature seasonality and PET, were most significant in explain-
ing the species richness pattern. Water–energy variables and their 
interactions had primacy over anthropogenic disturbance and phys-
iography. Disturbance is a critical factor in the southwestern region 
and places of low elevations with large populations. Physiography is 
less significant compared with disturbance. The exclusion of eleva-
tion from the list of selected variables may be significant in this low 
performance of the physiographic variables with respect to species 
richness. Further investigations may improve the findings if eleva-
tion is included in the list of predictors. Additionally, the better cor-
relation of species richness with energy than with water needs to 
be verified in different climatic regions. Although this study focuses 

on disentangling the effects of abiotic predictors on species rich-
ness, the relationships between the biotic factors, that is, disper-
sion, competition, and isolation, are likely to improve the reliability 
and performance of the models. Nevertheless, the present study 
provides better insights into ecologists and planners dealing with 
plant distribution patterns vis-à-vis climate change projections.
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F IGURE  4 Curves showing species response function with (a, b) water and (c, d) energy variables
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