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Information about the spatial distribution of soil properties is necessary for natural resources modeling; however, the cost of soil
surveys limits the development of high-resolution soil maps. The objective of this study was to provide an approach for predicting
soil attributes. Topographic attributes and the normalized difference vegetation index (NDVI) were used to provide information
about the spatial distribution of soil properties using clustering and statistical techniques for the 56 km2 Gumara-Maksegnit
watershed in Ethiopia. Multiple linear regression models implemented within classified subwatersheds explained 6–85% of the
variations in soil depth, texture, organic matter, bulk density, pH, total nitrogen, available phosphorous, and stone content. The
predictionmodel was favorably comparable with the interpolation using the inverse distanceweighted algorithm.Theuse of satellite
images improved the prediction.The soil depth prediction accuracy dropped gradually from 98% when 180 field observations were
used to 65% using only 25 field observations. Soil attributes were predicted with acceptable accuracy even with a low density of
observations (1-2 observations/2 km2). This is because the model utilizes topographic and satellite data to support the statistical
prediction of soil properties between two observations. Hence, the use of DEM and remote sensing with minimum field data
provides an alternative source of spatially continuous soil attributes.

1. Introduction

Quantitative information and spatial distribution of soil
properties are among the main prerequisites for achieving
sustainable land management. The accuracy of soil infor-
mation determines, to a large extent, the reliability of land
resources management decisions [1–3]. Conventional soil
surveys are usually used to derive information about soils
and their distribution [4]; however, limited areas are covered
by detailed soil information mainly due to the high costs
of surveys [5]. Furthermore, the spatial distribution of soil
characteristics as represented by a conventional soil map does
not reflect the distribution in the field because of the polygon-
based mapping employed [6]. In polygon-based mapping,
soils are assumed to be homogeneouswithin the polygon, and
abrupt changes take place at the boundaries between poly-
gons [7, 8]. Soils usually show a diffuse spatial distribution

that is hard to address in polygon-based soil maps [9]. Many
researchers have suggested continuous raster maps as a better
alternative to mapping soils and their properties [6, 7, 9].

In soil science, the implementation of geomatics—GIS,
GPS, remote sensing, and digital elevationmodels (DEMs)—
is suggesting new alternatives [3, 10]. Global coverage of high-
resolution imagery and terrain data is increasing, and this
enhances the popularity of digital soil mapping to generate
accurate soil maps that capture many properties with reason-
able effort [11]. The benefit of using GIS is the production of
digital soil attributes and digital soil maps to optimize the
need for costly field work and laboratory analysis [10, 12].

Various statistical models are used to investigate the rela-
tionships between the spatial distribution of soil attributes
and that of landscape attributes. Predictive mapping tech-
niques, such as geostatistics (i.e., kriging and cokriging),
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fuzzy logic, linear and multiple regression, regression trees,
and neural networks, have been used to develop soilmaps [10,
13]. Ongoing research in digital soil mapping indicates that
quantitative prediction models are promising tools to pro-
duce soilmapswith acceptable accuracy [14, 15]. Research has
provided optimistic results, and some researchers obtained
better results than traditional soil surveys [16–18]. The use
of satellite data to complement topographic information
improves the mapping of natural resources [10, 13, 19].
These investigations are based on the relationship between
landscape pattern and the differentiation of soil types and
attributes [20]. The spatial distribution of specific soil prop-
erties has been predicted using soil-landscapemodeling.This
included sand, silt, and organic matter contents; A-horizon
thickness; solum depth; extractable phosphorus; and pH [21,
22]. Using different terrain attributes, the empirical models
developed in these studies explained 41–68% of the variation
in soil properties [21, 22].

GIS is used to quantify the relationships between soils
and topographic and remote sensing variables and to aid the
digital soil mapping efforts [2, 3, 10, 23, 24]. Topographic
parameters are derived from DEMs and used to predict
the distribution of soil characteristics [5, 22, 25, 26]. The
increasing availability of high-resolution remote sensing data
provides a new opportunity for predicting soil character-
istics with acceptable accuracy [11]. Many researchers have
reported on the contribution of remote sensing data in
providing acceptable prediction of soil characteristics [27–
29]. Nevertheless, there are many issues that warrant further
research: the conjunctive use of satellite data and topographic
data to improve the prediction of soil characteristics; and the
best time of year to acquire satellite data. The use of various
numbers (densities) of observations, and how that affects
accuracy, will help researchers decide on a reasonable number
of observations to maintain acceptable accuracy with an
appropriate amount of field work. The use of soil-landscape
models to predict soil attributes is theoretically better than
interpolation techniques, because the former uses topogra-
phy and satellite data as a background to guide prediction,
while interpolation relies solely on the spatial relationships
between adjacent observations without considering the vari-
ations in factors that drive soil differentiation. However,
the merits of using soil-landscape modeling compared with
interpolation techniques need verification and quantification,
especially when a limited number of observations are avail-
able. The objective of this study is to investigate the utility
of a soil-landscape model using DEM and remote sensing to
predict the spatial distribution of soil characteristics with an
optimum number of field observations.

2. Materials and Methods

The study area is located in the Lake Tana basin in the Gum-
ara-Maksegnit watershed of the Amhara region in Ethiopia,
within 12∘24󸀠–12∘31󸀠N and 37∘34󸀠–37∘37󸀠E. It is centered
45 km southwest of Gondar town and covers an area of
56 km2. Altitude within the watershed ranges from 1923 to
2851m above sea level, with topography ranging from gentle
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Figure 1: Distribution of field observations, watershed boundary,
stream network, and subwatershed divisions for Gumara-Maksegnit
watershed.

to sharp steep slopes. The mean annual rainfall is 1052mm.
The mean minimum and maximum temperatures are 13.3
and 28.5∘C, respectively.The study area is characterized by an
ustic moisture regime [30]. The natural resource base has
been depleted to a great extent due to soil erosion and
improper land use, which resulted in reduced tree cover,
biodiversity, agriculture, range, and pasture productivity.

2.1. Soil Survey and Field Observations. The area was divided
into square grids (500m × 500m). The total area of the
watershed and the heterogeneity of topography and vegeta-
tion cover, and consequently the soils, were used to guide
the selection of this grid size. Larger grid size (1 km) would
result in a limited number of observations and would limit
the representation of soil variability. Soil samples were taken
within each grid in the watershed (Figure 1). This was a com-
promise between grid and free sampling techniques. While
the surveyor was free to take the sample within the defined
grid to represent the area, the distribution of sampling sites



Applied and Environmental Soil Science 3

still followed an unbiased grid. In cases where many grids
shared common features, the surveyor reduced the number
of samplings to represent these grids with one sampling site.
Each site was excavated to a depth of 100 cm, or an impeding
layer, using an auger. FAO terminology [30] was used to
describe the sampling sites. The soil attributes and site char-
acteristics recorded were GPS coordinates (easting, northing,
and elevation), soil depth using an auger, slope steepness
(percent) estimated using clinometers, surface stone cover
(percent), and stone content of the top soil layer (0–25 cm). A
soil sample for each soil observation was taken for laboratory
analysis.The following soil attributes were analyzed: clay, silt,
sand, organic matter, total nitrogen and available phosphorus
contents, pH, and bulk density.

The hydrometer method outlined by the simplified pro-
cedure of Day was used to determine soil particle size distri-
bution [31]. Hydrogen peroxide (H

2
O
2
) was used to destroy

the organicmatter, and sodiumhexametaphosphate (NaPO
3
)

was used as a dispersing agent. The bulk density (Bd) of the
soil was estimated from undisturbed (core) soil samples col-
lected using a core sampler, weighed at fieldmoisture content,
and then determined following the procedures of Blake [32].

Soil pH was measured using a digital pH meter in the
supernatant suspension of 1 : 2.5 soil : liquid ratio; where the
liquids were water and 1M KCl solution, and pH was calcu-
lated by subtracting soil pH (KCl) from soil pH (H

2
O). The

organic carbon content of the soil was analyzed following the
wet digestionmethod described byWalkley and Black, which
involves digestion of organic carbon in the soil samples with
potassium dichromate (K

2
Cr
2
O
7
) in sulfuric acid solution

[33].The Kjeldahl procedure was followed for the determina-
tion of total nitrogen as described by Sahlemeden andTaye by
oxidizing the organic matter with concentrated sulfuric acid
and converting the nitrogen in the organic compounds into
ammonium sulfate during the oxidation [34].

Available phosphorus was determined by Olsen et al.
method [35].The soil sampleswere shakenwith 0.5Msodium
bicarbonate at a nearly constant pH 8.5 in 1 : 2 soil : solvent
ratio for 30min, and the extract was obtained by filtering
the suspension as indicated by Olsen et al.. The available
phosphorus extracted was measured by spectrophotometer
following the procedure outlined by Murphy and Riley [36].

2.2. DEM and Terrain Analysis. Shuttle Radar Topography
Mission (SRTM) 90m resolution DEM was used for the
study. The free availability and accuracy of this product,
checked against field observations, were the main reasons for
its selection. Previous research recommended some terrain
attributes as best predictors of soil characteristics [37, 38].
The following terrain parameters were derived using standard
commands in ArcGIS: aspect; profile, plan, and mean curva-
tures; flow accumulation area and slope.The average upslope
contributing area for each pixel (upslope flow accumulation)
was calculated by multiplying the average flow accumulation
grid by the area of the pixel (flow accumulation × 8100m2).
The compound topographic index (CTI) for each pixel was
calculated using the formula [21] CTI = ln (As/tanD), where
As is the average upslope contributing area and D is the
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Figure 2: Distribution and characteristics of the seven subwater-
sheds classes.

average slope degree. ARCSWAT was used to derive the
stream network, and the watershed was also automatically
divided into a number of subwatersheds (Figure 1).

The watershed subdivisions were considered as a base
unit in the prediction model analyses. This is because the
correlation between terrain attributes and soil characteristics
for the whole watershed was very low and therefore unsuit-
able to predict the latter from the former. The subdivision
of the whole watershed into smaller subwatersheds grouped
the soil observations into homogeneous units and so enabled
the establishment of better statistical relationships [37]. Each
small subwatershed was divided, by the passing streamline,
into two facets (subdivisions) (Figure 1).The generated facets
were grouped into classes (Figure 2), based on their charac-
teristics of area and slope. If individual subwatersheds were
considered directly, the number of observations within each
subwatershed was not enough to establish a rigorous statisti-
cal relationship. The grouping of subwatersheds into classes,
based on characteristics such as area and slope, increased
the number of observations within each class and enabled
good prediction. The selection of an appropriate number
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of classes to cluster the subwatershed facets is important in
generating good results [37]. The classification (grouping) of
subwatershed facets was repeated to produce a classification
that led to an approximately equal number of observations in
each class (at least 15 observations).This allowed a reasonable
regression model to be established for each class.The clusters
were used in the prediction of soil attributes. Seven classes
were found to be optimum for predicting soil attributes in the
study area.

2.3. Generating the Normalized Difference Vegetation Index
(NDVI) Map. ASTER satellite images taken on January 30
and March 19, 2007 and SPOT satellite images taken on
October 8 and November 23, 2007 were analyzed in order
to select the best image(s) for the study. The images were
corrected radiometrically and geometrically using ENVI
software. Radiometric correction was done separately for
ASTER and SPOT imagery on an individual band basis.
Geometric correction for the images within the study area
was done by taking the October SPOT image as a base image.
The corrected images were resampled to the same spatial
resolution (15m× 15m).TheNDVI values for each pixel were
calculated using the following formula [39]:

NDVI = NIR − 𝑅
NIR + 𝑅

, (1)

where NIR is reflection in near infrared and 𝑅 is reflection
in red wavelength. NDVI values of the four images were
compared based on their vegetation biomass distribution.
Two images with maximum and minimum vegetation cover
were selected: an ASTER image taken on March 19 when
most of the watershed area was bare and a SPOT image
taken on October 8 when the most was vegetated. This
enabled assessment of the best time for satellite images to be
taken for improving soil prediction. The other two images
provided less extra information and were not considered in
further analysis. Theoretically, the image in March reflected
variations in soil appearance or color because the soil was
bare at that time in Ethiopia (direct effect), while the image in
October reflected the indirect effect of soil characteristics on
vegetation cover and greenness because the soil was covered
with vegetation at that time.

Terrain attributes and satellite data for each soil observa-
tion were extracted. Statistical analyses were implemented,
within each class, between the derived terrain attributes,
satellite data, and collected soil attributes of field observations
using SPSS. Multiple linear regression models are usually
employed to predict dependent (soil attributes) from inde-
pendent variables (satellite data and terrain attributes). From
a total of 220 observations, 180 were randomly selected for
analysis, and the remaining 40 observations were used to
assess the accuracy of the prediction model. A regression
model was established for each class to predict soil attributes
from terrain attributes and satellite data. Map algebra of
ArcGIS was used to obtain predicted soil attribute grids
using the regression models and the raster grids for each
class (slope percent, contributing area, CTI, aspect classes,

curvature classes, and NDVI values of ASTER and SPOT
images). An example of these equations follows:

Clay content (class 1)

= 17.69 + ((grid slope) ∗ 0.07)

+ ((grid flowaccumulation) ∗ 0.00002)

+ ((grid CTI) ∗ 0.12)

+ ((grid aspect) ∗ 0.25)

+ ((grid meancurvature) ∗ 0.54)

+ ((grid NDVI-March) ∗ −0.004)

+ ((grid NDVI-October) ∗ −0.006) .
(2)

Predictions were first executed for individual classes and
were then merged together to generate predicted values for
the whole watershed.The prediction accuracy was verified in
two ways: first, by comparing the predicted and observed val-
ues using 40 randomly selected field observations (Figure 1);
and second, by comparing the predicted soil attributes with
those derived using the inverse distance weighted (IDW)
technique.

The role of satellite data in improving the prediction accu-
racy of soil attributes using multiple linear regression models
was assessed by repeating the previous analysis without using
the satellite images as an independent variable. This was
done for one of the soil attributes (clay content). Regression
coefficients (𝑅2) of the models without including remote
sensing data were compared with those that included satel-
lite data. The quality of the predictions with and without
satellite data was also tested by examining the relationship
between observed and predicted values when some differ-
ences between them were allowed. This comparison was
implemented by allowing a difference between predicted
and observed clay content of 3, 5, or 7%—because it was
not expected that predicted values would exactly equal the
observed values (where the difference allowed was zero). In
fact, within a distance of 1m in the field, there are some
differences in some soil attributes within these ranges.

2.4. Selection of the Optimum Number of Observations for Soil
Prediction. The effect of the number of field observations
used to build the regression models on the accuracy of the
predictionmodel (sensitivity analysis) was investigated using
soil depth as an example.Thiswas to determine theminimum
number of observations to maintain acceptable prediction
accuracy of soil attributes. Various numbers of observations
were selected, starting from 180 and gradually decreasing:
150, 120, 90, 60, 40, 30, 25, and finally 20 observations. The
prediction model was implemented until a threshold was
reached where the prediction accuracy declined sharply to
a low level. The classes used in the earlier modeling were
amalgamated to get an optimum number of observations per
class. The accuracies of predicting soil depth as a result of
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Table 1: Descriptive statistics of the soil attributes and site characteristics for soil observations.

Variable Minimum Maximum Mean Mode Std. deviation
Soil depth (cm) 0 101 43.5 101 33.0
Elevation (m) 1954 2852 2252 2020 220
Slope (%) 2 90 34.8 30 23.3
Stone cover at the surface (%) 0 65 15.4 10 14.2
Stone in the soil (%) 0 73.8 17.4 0 13.2
Clay content (%) 11.6 67.8 28.6 20.3 12.6
Silt content (%) 4.0 49.8 34.0 39.8 7.7
Sand content (%) 14.6 72.6 37.3 42.6 9.3
Organic matter (%) 0.21 9.97 2.82 1.12 1.9
Total nitrogen (%) 0.03 9.06 0.26 0.22 0.6
Available phosphorus (mg kg−1) 0.5 97.2 14.1 4.5 15.3
Bulk density (g cm−3) 0.81 1.70 1.25 1.21 0.2
pH 5.34 7.98 6.72 6.62 0.41
Erosion status Low Severe — Moderate —
Erosion type Sheet Gully — Rill —

using different numbers of soil observations (density) were
estimated using different validation indices [27, 40], such as
the root mean square error (RMSE) and the mean absolute
estimation error (MAEE). As the difference between pre-
dicted values andobserved values increases, so do bothRMSE
and MAEE. Consider the following:

RMSE = 1
𝑛

𝑛

∑

𝑖=1

√(𝑌́
𝑖
− 𝑦
𝑖
)

2

,

MAEE = 1
𝑛

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
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𝑖
− 𝑦
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
,

(3)

where n is the number of verification points, 𝑌́
𝑖
is predicted

soil depth, and 𝑦
𝑖
is observed soil depth. The quality of

the prediction using different densities of observations was
also tested by examining the relationship between observed
and predicted values by allowing some differences between
them.This enabled easy observation of the gradual change in
percentage of observations predicted correctly when different
observation densities were used.

3. Results and Discussion

Descriptive statistics for soil attributes and site characteristics
were recorded for each site (Table 1).The correlation between
soil attributes and terrain attributes and satellite data, when
considering the whole set of soil observations, was very low
(0.0–0.50); thus, building a regression model to predict soil
attributes would not produce acceptable results. However,
the range of 𝑅2 between soil attributes and terrain attributes
and satellite data when the whole watershed was divided into
smaller subwatersheds was 0.06–0.85 (Table 2). 𝑅2 depended
on the type of soil attribute and the subwatershed facet class
for which the relationship was being established. In general,
the𝑅2 values were acceptable comparedwith previous studies

[40–42] and were used to generate predictions of the var-
ious soil attributes within the seven classes. However, the
final judgment of the prediction accuracy is made through
the comparison between predicted and measured values of
soil characteristics. Significant correlations between terrain
attributes and satellite images with soil attributes varied for
the same soil attribute for different classes (Table 3). For
example, in class 2, clay content was significantly correlated
with slope percent, upslope contributing area, and theASTER
image taken inMarch, whereas, in classes 3 and 7, clay content
was highly correlated with slope percent, aspect, curvature,
the ASTER image taken in March, and the SPOT image
taken in October.These relationships indicate that classifying
the watershed into classes improved the prediction of soil
attributes. The results were supported by findings of other
researchers who reported low 𝑅2 (0.0–0.19) between various
soil attributes and terrain attributes for the whole watershed,
which was also improved significantly for the classified
subwatersheds and consequently improved the prediction
accuracy of soil attributes [37].

The regression coefficients (Table 3) indicated that digital
terrain attributes had a stronger influence on soil properties.
This was supported by previous studies [43, 44]. In nature,
soil properties are highly spatially variable [45, 46], and,
for accurate estimation of soil properties, this continuous
variability should be considered. In addition, in nature, land
is not flat (two dimensional) as it is represented on the
map. Hence, prediction will be more reliable if a three-
dimensionalmodel is used inwhich terrain attributes provide
a quantification of landform shape and connectivity that
define geomorphometry and water flow patterns [37, 47–49].

The RMSE between predicted soil characteristics and
those observed in the field (Table 4) indicated good accuracy
of prediction using the regression models for most soil
characteristics when compared with previous studies [38, 40,
50]. Bayer et al. found that two regression techniques had
similar capabilities to provide significant prediction models
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Table 2: Regression coefficients (𝑅2) of the predicted soil attributes for different classes.

Class Soil depth
(cm)

Clay
content
(%)

Silt
content
(%)

Sand
content
(%)

Organic
matter (%)

Bulk
density

(gm cm−3)
pH

Total
nitrogen
(%)

Available
phosphorus

(ppm)

Stone at
surface
(%)

Stone in
soil (%)

1 0.45 0.12 0.21 0.16 0.25 0.34 0.39 0.19 0.16 0.10 0.13
2 0.45 0.50 0.26 0.53 0.32 0.21 0.18 0.09 0.07 0.37 0.58
3 0.72 0.80 0.73 0.81 0.64 0.54 0.48 0.72 0.68 0.26 0.32
4 0.76 0.54 0.42 0.57 0.85 0.65 0.37 0.78 0.71 0.69 0.79
5 0.53 0.38 0.26 0.06 0.26 0.48 0.79 0.19 0.50 0.21 0.54
6 0.34 0.52 0.24 0.52 0.18 0.26 0.14 0.26 0.18 0.07 0.28
7 0.25 0.33 0.33 0.26 0.25 0.36 0.32 0.19 0.15 0.17 0.18

Table 3: Regression models to predict clay percent of the surface layer using terrain attributes and satellite images.

Class no. Constant Slope (%) As CTI Aspect Curvature ASTER March SPOT October 𝑅
2

1 17.69 0.07 0.00002 0.12 0.25 0.54 −0.004 −0.006 0.12
2 42.93 −0.33

∗∗

0.0001
∗

−0.75 0.31 1.08 −0.08
∗∗ 0.04 0.50

3 39.16 −0.53
∗ 0.0001 1.34 3.93

∗∗

−2.63
∗∗ 0.04 −0.20 0.80

4 22.12 −1.37
∗

−0.0001 3.68 2.79 0.76 −0.02 −0.13 0.54
5 −2.82 −0.06 −0.0001 2.74 1.94 0.15 −0.01 −0.04 0.38
6 53.77 −0.25

∗∗

0.0001
∗∗

−1.20 −1.72
∗

−0.20 −0.05
∗∗ 0.007 0.52

7 12.29 −0.18
∗

−0.00003 1.75 1.40 1.62 −0.01
∗

−0.04
∗ 0.33

∗Significant at the 0.05 probability level; ∗∗significant at the 0.01 probability level.
As: upslope contributing area; CTI: compound topographic index.

for soil organic carbon and iron oxides [51]. In the present
study, comparing this RMSE with that derived from spatial
interpolation using the IDW method indicated favorably
comparable accuracy of the prediction model; RMSE of the
prediction model was lower than that of the IDW in all
cases. Similar results were also observed when the number of
observations used was reduced to 60 (Table 4). In addition,
comparing the RMSE differences (between the prediction
model and the IDW) using 180 with that of 60 observations
indicated higher increments in error term differences as
the number of observations used decreased (Table 4). As
a result, the prediction model was highly preferred due to
higher accuracy than IDW, especially when a limited number
of observations (60) were used. This is because the soil-
landscape model provides estimates based on the character-
istics of the terrain between two observations and therefore
improves accuracy. This is not the case when interpolation
is done with the assumption that closest observations are
also closer in their soil characteristics, which is not always
true. The soil-landscape model uses the background topog-
raphy and satellite data to characterize each observation and
then predict their soil attributes with consideration of the
characteristics of these observations. This is consistent with
soil genesis theories that are not considered in interpolation
techniques. Previous research indicated that the use of differ-
ent regression techniques enables the prediction of different
topsoil parameters in a rapid and nondestructive manner,
while avoiding the spatial accuracy problems associated with
spatial interpolation [52].

The results indicated that soil attributes were predicted
with acceptable accuracy using SRTM 90m DEM and also

provide a visual representation of the spatial distribution of
soil attributes (Figure 3). This indicated that soil attributes
can be predicted with low resolution DEMs. These conclu-
sions were similar to those of Thompson et al. [53] and
Wechsler [54], who concluded that high-resolutionDEMs are
not always necessary for soil-landscape modeling. Chabrillat
et al. (2002) reported that although higher spatial resolution
provided a purer image in more heterogeneous sites, it did
not identify new features that a lower spatial resolution data
set would miss in homogeneous terrain [55].

When only terrain attributeswithout satellite imageswere
used to build multiple regression models (Table 5), the 𝑅2
declined for all classes compared with those obtained using
both terrain and satellite data (Table 3). For example, there
were large decreases in 𝑅2 in class 5 from 0.38 (Table 3)
to 0.18 (Table 5) and in class 2 from 0.8 (Table 3) to 0.68
(Table 5). This indicated that satellite images could improve
the prediction of soil attributes when used together with
terrain attributes in building regressionmodels. Gerighausen
et al. found that the use of multiannual image data enhanced
the prediction of soil parameters [56]. The percent of agree-
ment between the predicted and observed clay content using
satellite images and terrain attributes was compared with
those derived using terrain attributes only. The prediction
accuracy of clay content (percent of correctly predicted obser-
vations) increased as a result of using satellite images with
terrain attributes compared to using terrain attributes only.
For example, 50% of the observations showed agreement in
predicting clay contents within a difference of ±7% between
observed and predicted values when only terrain attributes
were used to build the model (Table 6). The above agreement
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Table 4: Root mean square error between field observations and predicted soil attributes for multiple regression and IDW and using different
densities of observations.

Predicted soil attributes R 180 (A) I 180 (B) R 60 (C) I 60 (D) B-A D-C
Soil depth (cm) 26.4 32.64 33.7 43.37 6.24 9.67
Clay (%) 12.6 16.64 12.70 20.51 4.04 7.81
Silt (%) 7.3 10.25 8.59 14.64 2.95 6.05
Sand (%) 9.4 11.47 10.24 15.44 2.07 5.2
Organic matter (%) 1.39 1.53 1.55 1.82 0.14 0.27
Bulk density (g cm−3) 0.18 0.25 0.24 0.36 0.07 0.12
pH 0.38 0.54 0.46 0.83 0.16 0.37
Total N (%) 0.29 0.46 0.09 0.34 0.17 0.25
Available P (mg kg−1) 19.41 20.35 17.12 21.22 0.94 4.1
Surface stone cover (%) 12.2 14.53 14.15 20.62 2.33 6.47
Stone in the soil (%) 12.4 15.71 17.13 26.38 3.31 9.25
R 180 (A): root mean square error calculated from those predicted using 180 observations by multiple regression models, I 180 (B): root mean square error
calculated from spatial interpolation (IDW: inverse distance weighted) using 180 observations, R 60 (C): root mean square error calculated from those
predicted using 60 observations by multiple regression models, I 60 (D): root mean square error calculated from spatial interpolation (IDW: inverse distance
weighted) using 60 observations, B-A: the difference in root mean square errors between those interpolated from 180 observations and those predicted using
180 observations by multiple regression models, and D-C: the difference in root mean square errors between those interpolated from 180 observations and
those predicted using 180 observations by multiple regression models.

Table 5: Regression models to predict clay percent of the surface layer using terrain attributes only (without satellite images).

Class No. Constant Slope (%) As CTI Aspect Curvature 𝑅
2

1 15.06 0.06 0.00001 0.23 0.27 0.61 0.10
2 46.18 −0.53

∗∗

0.0001
∗

−1.29 0.88 1.07 0.37
3 19.31 −0.28

∗ 0.00006 0.29 4.54
∗∗

−4.55
∗∗ 0.68

4 3.44 −1.38
∗

−0.00008 2.68 3.17 2.37 0.46
5 0.97 −0.11 −0.0002 1.78 1.25 1.10 0.18
6 66.35 −0.40

∗∗

0.0002
∗∗

−2.30 −2.11
∗

−1.41 0.45
7 3.46 −0.22

∗

−0.00004 1.85 1.25 2.52 0.24
∗Significant at the 0.05 probability level; ∗∗significant at the 0.01 probability level.
As: upslope contributing area; CTI: compound topographic index.

Table 6: Agreement between observed and predicted values of soil
attributes using terrain attributes with and without satellite images.

Predicted clay content
using terrain attributes and
satellite images

Predicted clay content
using terrain attributes only
(without satellite images)

D∗ %§ D∗ %§

0 5.0 0 0
3 27.5 3 22.5
5 50.0 5 35
7 62.5 7 50
∗Magnitude of difference between observed and predicted value; §percent of
observations where predicted values agreed with observed values.

was improved to 62.5% when satellite images were used
with the terrain attributes. The results showed that satellite
images improved the prediction of soil attributes when used
with terrain attributes to build multiple regression models.
This is because satellite images provide more information
about the factors controlling soil variability in addition to the
topographic information provided by DEM-derived terrain
attributes. Chabrillat et al. (2002) indicated that imaging

spectrometry aids in the detection and mapping of expansive
clays [55]. The images taken at two different dates provided
direct and indirect information. The direct information was
through the variation in the soil surface reflectance, which
is related to soil variability (when the soil surface is bare
during March). The indirect information was through the
reflectance of the different vegetation cover, which reflects
the variation in soil type through the effect on vegetation
cover characteristics during October. Many researchers have
suggested that remote sensing helps in providing accurate
prediction of soil properties [27–29]. Bartholomeus et al.
(2012) showed that although variation of soil properties
within vegetation classes is large, the vegetation composition
is useful to estimate soil properties [57].

Since the spectral reflectance of both satellite images was
significantly correlated with clay content (Table 3), we can
conclude that two images taken during dry and rainy seasons
could be sufficient, with terrain attributes, to predict soil
attributes usingmultiple linear regressionmodels. During the
dry period, there was a correlation between soil properties
(clay content) and spectral reflectance in the visible range
[58]. During the rainy season, most of the area was covered
with vegetation that reflects variation in soil properties such
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Figure 3: Predicted clay content (%) of the surface soil using terrain
attributes, satellite images, and 180 field observations.

as clay content. As a result, soil properties could be indirectly
predicted by determining the spectral reflectance of the
vegetation cover. However, the satellite image taken when
the field was bare showed higher correlation with all soil
attributes compared with the satellite image taken when the
field was covered by vegetation. Hence, the best time to
acquire satellite images to improve the prediction of soil
attributes would be during the dry period when most of the
area is bare. Mulder et al. [29] also reported similar findings
and successfully used airborne, space borne, and in situ
measurements using various instruments.

Selecting Optimum Number of Field Observations to Predict
Soil Attributes.The seven classes that were used in the earlier
modeling (and using 180 observations) were amalgamated

Table 7: Percent of correctly predicted observations within ±50 cm
of the observed soil depth, RMSEs, and MAEEs calculated using
different field observation densities.

Number of
observations
used

Percent of correctly
predicted

observations
within ±50 cm

RMSE (cm) MAEE (cm)

180 97.5 26.4 21.7
150 95 29.7 25.5
120 92.5 31.4 26.5
90 87.5 31.7 26.5
60 87.5 33.7 29.4
40 72.5 40.9 31.3
30 67.5 54.3 42.5
25 65 57.5 46.4
20 35 126.0 88.2

first into five classes, and several trials were done to predict
soil depth using 150, 120, and 90 observations to build
regression models. The analysis was repeated based on two
classes to build regression models using only 60, 40, 30,
25, and 20 observations. This was because, when a limited
number of observations were used (≤60 observations), there
were insufficient observations if five or seven classes were
used (the number of observations for each class was too
low to build good regression models). The regression models
(and 𝑅2) to predict soil depth at different densities of field
observations using terrain attributes and satellite images
were used to get predicted soil-depth grids (Figure 4). The
proportion of predicted soil-depth of zero (no soil) increased
dramatically as the number of observations used reduced
from 25 to 20 (Figure 4).

The optimum number of observations to produce an
acceptable prediction of soil attributes was assessed using
percent of observations where the soil depth was correctly
predicted within an acceptable range of agreement (using
RMSE and MAEE). The accuracy of predicting soil depth
decreased from 97.5% when 180 field observations were
used to 95% for 150 observations, reached 65.0% using 25
observations, and then dropped drastically to 35% for 20
observations (Table 7).Therewere gradual increases inRMSE
andMAEE from the predictions using 180 observations (26.4
and 21.7 cm, resp.) to the predictions using 25 observations
(57.5 and 46.4 cm, resp.); then, both increased sharply for 20
observations (126 and 88.2 cm, resp.; Table 7). Since there was
a high increment in RMSE andMAEE values at 20 compared
with 25 observations, it can be considered that 25 obser-
vations (or one observation/2 km2) were optimum to build
multiple regression models in soil-landscape modeling for
this particular watershed. The accuracy assessment methods
used for selecting the optimum number of observations to
predict soil depth indicated that 25 observations were the
minimum required for multiple linear regression models to
produce acceptable soil prediction. The results also indicated
that the prediction accuracy was the same when 60 or 90
observations were used (87.5%). However, a close look at
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Figure 4: Predicted soil depth (cm) using terrain attributes, satellite images, and different density of field observations.

Figure 4 revealed that the spatial distribution of the predicted
soil depth classes drastically changed when the number of
observations used was <60. Therefore, it can be suggested
that, for this study area, the optimumnumber of observations
to generate an acceptable prediction is somewhere between
60 and 25 observations (1-2 observations/2 km2). The users
can select between these observation densities to produce an
optimum results. The approach indicated that soil-landscape
modeling could be used with a low number of observations
to produce accurate predictions of soil attributes with an
acceptable representation of the spatial distribution of soil
attributes over the landscape.

4. Conclusions

The use of satellite image data together with terrain attributes
improved the prediction of soil attributes. Two satellite
images taken at different dates, one in the dry season and
the other in the rainy season, were sufficient to capture

the variation in soil reflectance and improve the prediction
accuracy. If one image is available, the best acquisition time
to facilitate soil-landscape modeling is during the dry season
when most of the soil surface is bare. Generally, the results
indicated that soil attributes were predicted with acceptable
accuracy using multiple linear regression models from freely
available DEM (90m resolution) and satellite images with a
minimum of field work. In addition, the prediction model
was highly preferred due to comparable accuracy with the
spatial interpolation using IDW, especially when a limited
number of observations were used, which is usually the case
in data-scarce areas. For this study, the optimum number of
observations to predict soil attributes using multiple regres-
sion models and using terrain attributes and remote sensing
data was between 60 and 25 observations (approximately 1-
2 observations/2 km2).The produced predictions will be very
useful to provide information for detailedmodeling activities,
especially for a country like Ethiopia in which information
on the detailed spatial distribution of soil attributes is very
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scarce. Further investigations should be made for applying
the model over larger areas with diverse soils and landscape
features to validate the results and to out-scale their applica-
tion.
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