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Abstract: Soil organic carbon (SOC) is one of the central issues in dealing with soil fertility as well
as environmental and food safety. Due to the lack of relevant data sources and methodologies,
analyzing SOC dynamics has been a challenge in Morocco. During the last two decades, process-
based models have been adopted as alternative and powerful tools for modeling SOC dynamics;
whereas, information and knowledge on the most sensitive model inputs under different climate,
and soil conditions are still very limited. For this purpose, a sensitivity analysis was conducted
in the present work, using the DeNitrification-DeComposition (DNDC) model based on the data
collected at a semi-arid region (Merchouch station, Morocco). The objective is to identify the most
influential factors affecting the DNDC-modeled SOC dynamics in a semi-arid region across different
climatic and soil conditions. The results of sensitivity analysis highlighted air temperature as the main
determinant of SOC. A decrease in air temperature of 4 ◦C results in an almost 161 kg C ha−1 yr−1

increase in C sequestration rate. Initial SOC was also confirmed to be one of the most sensitive
parameters for SOC. There was a 96 kg C ha−1 yr−1 increase in C sequestration rate under low initial
SOC (0.005 kg C ha−1). In the DNDC, air temperature in climatic factors and initial SOC in variable
soil properties had the largest impacts on SOC accumulation in Merchouch station. We can conclude
that the sensitivity analysis conducted in this study within the DNDC can contribute to provide a
scientific evidence of uncertainties of the selected inputs variables who can lead to uncertainties
on the SOC in the study site. The information in this paper can be helpful for scientists and policy
makers, who are dealing with regions of similar environmental conditions as Merchouch Station, by
identifying alternative scenarios of soil carbon sequestration.

Keywords: soil organic carbon; DNDC model; climate conditions; soil properties; food safety

1. Introduction

Soil organic carbon (SOC) plays an important role in determining soil fertility, soil
structure, nutrient retention, susceptibility to land degradation, and water holding capacity,
and therefore sustains food production [1–5]. The improvement of this major soil compo-
nent is of high importance, especially for soils with intrinsically low levels of organic matter
in their surface layers. Carbon (C) sequestration in agricultural lands is a key approach
to reduce industrial CO2 emissions, attenuate global warming, and improve biological,
physical, and chemical soil properties [6–8]. In general, SOC storage is greatly influenced
by environmental factors including climate conditions, vegetation, soil properties, farming
management practices, relief, and land use [9–12]. The regional temperature (T) and precip-
itation (P) influence the SOC’s role as a source or sink [13,14]. Field et al. [15] pointed out
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that the average temperature will greatly rise by the end of this century. For this purpose,
greater knowledge has recently been perceived about climate change effects on the SOC
changes in Morocco. Mediterranean agricultural areas have typically a lower SOC than
temperate zones depending on seasonal dryness and particular climate features [16,17].

These areas are often degraded and highly vulnerable to climate change because of
water scarcity and high risk of desertification. Therefore, most Mediterranean soils should
deal with SOC depletion leading to low soil fertility [18–20]. Unfortunately, these trends
might lead to a decrease of crop productivity that threatens food safety. Furthermore,
soil C sequestration is a function of both primary production and decomposition of soil
organic matter (SOM) in agricultural soils, and thus, climatic fluctuations in T and P have a
substantial impact on SOC changes [21–24]. Several scientists worldwide focused on the
impacts of changing T or P on SOC stocks in order to understand the role of climatic factors
on long-term development of soil C in a given area [25–27]. Increases in air T speeds up
the SOC decomposition rates by increasing soil C mineralization and respiration [28–30].
Furthermore, P is regarded as a critical component of the soil organic C sequestration [31].
Water is a major driver of chemical and biological activities at different levels: Plant growth,
survival, photosynthesis, soil respiration, and microbial activity. Therefore, P patterns
deeply affect the function and structure of terrestrial ecosystems [32]. The function and
structure of terrestrial ecosystems will be profoundly affected by P patterns fluctuations.
On the other hand, the SOC in agroecosystems is simultaneously influenced by the soil
properties (i.e., soil pH, initial SOC and clay content). Texture represents one of the key
soil variables considering its tight correlation with root growth, thermic conductivity, gas
exchange and aggregates [33]. This soil component has been reported as a crucial factor
determining the accumulation of SOM. Furthermore, clay particles stabilize SOM against
microbial mineralization, improve soil water retention, and have a high cation exchange
capacity [34,35]. Therefore, low clay soils are mostly associated with low availability of
nutrients and water for plant growth [36]. Soil pH regulates soil nutrient bioavailability,
SOM turnover, and a range of other soil activities, thus influencing SOC levels [37,38].
According to Aciego Pietri and Brookes [39] and Andersson and Nilsson [40], soil pH
affects microbial activity, hydrolysis and protonation processes, and therefore impacts the
decomposition of SOM. Similarly, Saby et al. [41] stated that the predominant environmental
component is the initial SOC, which negatively influences SOC. In fact, higher initial SOC
in soils can lead to significant SOC losses at early stages due to the favorable environment
for microbial communities, resulting in faster microbial decomposition and a lower SOC
sequestration rate [42]. This is especially true under Mediterranean conditions where
decreased T stimulates microbial activity. All the above climatic and edaphic parameters
influence greatly SOC content.

Over the past two decades, process-based biogeochemical models have been devel-
oped and used widely among researchers for assessing the impacts of numerous factors
driving C storage in soils and generating scenarios for studying SOC dynamics. However,
uncertainty associated with this process-based model is unavoidable, as knowledge of
model input parameters derived from sparse data is imperfect. Hence, modeling outputs
without representation of uncertainty have very deficient value for decision-making [43].
Towards to minimize the uncertainties of models parameters and thus to enhance the accu-
racy of the modeled results, sensitivity analysis is usually used to assess the sensitivity of
model output parameters to the input parameters [44], and identify the crucial parameters
controlling model outputs [45].

In a previous study, we validated the DNDC model in Merchouch station during the
period of 2008–2016 using the local climate, soil data and farming management conditions
in order to simulate the SOC trends [46]. In this study, we simulated SOC changes under
a number of alternative scenarios by varying climatic conditions and soil properties over
9 years based on a validated DNDC model under a no-tillage system in Merchouch station.
The major objectives of our study were as follows: (1) evaluate the sensitivity of simulated
SOC to several inputs parameters, including temperature, precipitation, clay content, soil
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pH, and initial SOC in DNDC model, and (2) identify through this sensitivity analysis the
main factors that affect SOC during the nine simulated years, thus revealing scenarios for
SOC sequestration.

2. Materials and Methods
2.1. Description of Study Site

This research was carried out at the Merchouch plateau in Morocco. A mean annual
temperatures and rainfall of 23 ◦C and 450 mm, respectively, characterize the Mediterranean
climate of this region. The experimental site is classified as Vertisol according to the world
reference base for soil resources (WRB) [47]. The soil has an initial SOC content below 2%,
a basic pH, and more than 0.50% clay content. More detailed information about the study
site can be found in a previous publication [46].

2.2. Treatments

In this study site, the trial consists of no-tillage (NT) system since 2004 performed
on 2 ha. The NT were ploughed, according to farmers’ practice in the region based on
wheat-legumes rotation. The NT method consists of a single operation which holds an
opening of 2–3 cm from the ground with a special NT drill allowing to put the seeds at
5 cm depth. Winter wheat was sown in mid-November at a 140 kg ha−1 seed rate, while
lentil was sown at seed rate of 40 kg ha−1 in mid-December. Wheat and lentil received a
rate of 150 and 100 kg ha−1, respectively, of complex fertilizer (14% N-28% P2O5-14% K2O)
before sowing. At the end of February, wheat received 100 kg ha−1 of urea. About 30% of
the crop residues were maintained at the surface after harvest.

2.3. Description of DNDC Model

The DNDC is a process-based model originally developed to simulate nitrogen and
carbon dynamics in agroecosystems in the U.S [48,49]. The DNDC consists of six sub-
models as shown in Figure 1. The soil climate sub-model calculates soil temperature and
moisture profiles based on soil physical properties, daily weather and plant water use. The
plant growth sub-model tracks crop growth and partitioning of the biomass into grain,
stalk and roots. The decomposition sub-model simulates the disintegration of SOM driven
by the soil microbial respiration. The nitrification sub-model calculates growth of nitrifiers
and oxidation of ammonium to nitrate. The denitrification sub-model operates at an hourly
time step to simulate denitrification and the production of nitric oxide, nitrous oxide, and
dinitrogen. The fermentation sub-model simulates methane production and oxidation
under anaerobic condition. The interaction among the six sub-models enables DNDC to
simulate a broad range of biochemical and geochemical processes that occur in both aerobic
and anaerobic conditions.

2.4. Required Data for DNDC Model Initialization

Collecting suitable input data for running the DNDC model at a research location is a
crucial task. The climate data, soil properties and agricultural management practices for
the study area were collected.

2.4.1. Climate and Soil Data

The meteorological data from 2008 to 2016 for the study site were obtained from the
Moroccan General Direction of Meteorology, including the daily precipitation and the
maximum and minimum air temperature. The soil data were collected from the study site.

2.4.2. Farming Management Practices Data

The agricultural management practices dataset including the tillage method, rates
of nitrogen fertilizer applied, dates of planting and harvest, and the crop residue rates
returned at surfaces after harvest were collected from the farming management database
of the National Institute of Agricultural Research. The cropping dataset for Merchouch
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station for both winter wheat and legumes including the physiological and phenological
parameters (e.g., water requirements, biomass partitions, C/N ratio, cumulative thermal
degree-days, and maximum yield) is also considered important for running the DNDC.
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2.4.3. DNDC Model Verification at the Study Site

The model performance was assessed for Merchouch station under no-tillage practice
in a previous publication [46]. The root mean square error (RMSE) and the Pearson
correlation coefficient (r) were calculated to verify the DNDC model performance and the
modeled results acceptability. The high r (0.83) and low RMSE (0.33) between measured
and simulated values indicate that the DNDC model generally showed a good performance
in simulating SOC stocks at the experimental site.

2.5. Baseline and Alternative Scenarios

The model was firstly run with a baseline scenario under no-tillage system as men-
tioned above with similar climatic and soil conditions of Merchouch station. The weather
and management data from 2008 to 2016 were selected to compose the baseline scenario
with the annual precipitation of 450 mm, temperature of 23 ◦C, soil clay fraction of 0.50%,
initial SOC content of 1.2%, and soil pH of 7.6 based on the conditions at the experimental
site in the 9 simulated years. In order to test the sensitivity of the DNDC (version 9.5) model
to the variability of factors influencing SOC such as, precipitation, temperature, initial
SOC, clay content, and soil pH, a sensitivity analysis was conducted within the model.
Alternative scenarios were compiled for this purpose by changing the five selected factors.
The daily maximum and minimum temperature from every day were set to increase or
decrease by 2 ◦C and 4 ◦C, respectively. The amount of precipitation for every rainfall
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event was set to increase or decrease by 10% and 20%. The soil properties including initial
SOC, clay content, and soil pH were constructed within the ranges of 0.5–3%, 0.19–0.63%,
and 5.3–9.6, respectively. The DNDC model was run under each alternative scenario while
keeping others constant. The details of the baseline and alternative climatic scenarios are
presented in Table 1. Note that the baseline and alternative scenarios used the same farming
management practices. The ranges tested for variable environmental factors constituting
the alternative scenarios were mostly selected according to [51–53] and are based on a
survey carried out by the National Institute of Agricultural Research.

Table 1. Baseline and alternative scenarios data.

Scenario Conditions or Variations

Baseline

Climate: 2008–2016, daily T and P data with mean annual temperature
23 ◦C and precipitation 450 mm

Clay content: 0.50%, SOC 1.2%, pH 7.6,
Crop: winter wheat-legumes,

Crop residue: 30%
Tillage: No-tillage system

Change in temperature Decrease and increase by 2 ◦C and 4 ◦C

Change in precipitation Decrease and increase by 10% and 20%

Change in Clay content% 0.19, 0.34, 0.40, 0.63

Change in initial SOC content (kg C kg−1) 0.005, 0.02, 0.03

Change in Soil pH 5.3, 6.5, 8.9, 9.6

After the model runs with the scenarios, 9-year average SOC changes were calculated
in 0–50 cm soil layer for each alternative scenario to assess their increase or decrease
compared to the baseline scenario.

Additionally, C sequestration rate was calculated according to Equation (1) [54] for
the baseline and each alternative climatic and soil scenarios.

C sequestration rate =
Ce − Cb

t
(1)

where Ce and Cb are SOC stocks (kg C ha−1) at the end and at the beginning of the
experiment, respectively, and t is the duration of the experiment (years).

2.6. Sensitivity INDEX

In this study, the sensitivity of modeled SOC stocks to the variability of the inputs
parameters selected with DNDC model was determined by calculating the sensitivity index
according to [55–57] (Equation (2)).

SI =

(O2 − O1)
Oavg

(I2−I1)
Iavg

(2)

where SI is the relative sensitivity index, I1, I2 are the minimum and maximum input
values for a specific parameter, Iavg is the average of I1 and I2, O1, O2 are the model output
values corresponding to I1 and O2, and Oavg is the average of O1 and O2. A positive SI
value refers to a positive correlation between the simulated results and the selected input
parameter, whereas a negative value indicated a negative relationship. Higher absolute
value of the index corresponds to larger input impact on the output. Moreover, a negative
value indicates an inverse association between the input and the output.
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3. Results
3.1. SOC Changes under Alternative Soil Properties

Soil properties have a major role in regulating the biogeochemical cycle of C in agroe-
cosystems [58]. By varying initial SOC content, clay content and soil pH. Eleven alternative
soil conditions were considered to represent the range of pH, SOC and clay content com-
monly observed in the study site.

The sensitivity analysis test indicated that the SOC was sensitive to initial SOC and
clay content. In fact, a decrease in initial SOC and/or an increase in clay content enhance
SOC stocks. The modeled results revealed that over simulated years, the annual mean
SOC stock in 0–50 cm soil layer decreased by 3% and 4% when the initial SOC content
increased from 0.012 kg C kg−1 (Baseline), to 0.02 kg C kg−1 and 0.03 kg C kg−1, respec-
tively. However, the SOC stock increased by 2% when the initial SOC content decreased
to 0.005 kg C kg−1 (Figure 2). These results implied that soils with higher initial SOC
content tend to lose more SOC stock, probably due to high decomposition rate and aerobic
conditions. Higher initial SOC content condition can provide a favorable environment for
microbial community, which negatively influences the C accumulation. Moreover, if the
clay content shifted from 0.50% (baseline), to 0.19%, 0.34%, 0.40%, and 0.63%, the SOC
stock decreases by 3%, 1%, 0.6%, and increases by 1%, respectively (Figure 3). On the
other hand, our simulations demonstrated that SOC stock increases by 0.7%, 0.5%, and
1%, when soil pH shifted from 7.6 (Baseline), to 5.3, 8.9 and 9.6, respectively. However,
it decreases by 0.9% when soil pH decreases to 6.5 (Figure 4). This can be explained
by the limited microbial activities under alkaline and acidic pH conditions. Figure 5 ex-
hibited the C sequestration rates under alternative soil property scenarios in Merchouch
station. There was a 42–112 kg C ha−1 yr−1 decrease in C sequestration rate when the clay
content was reduced by 0.19–0.40% from the baseline. Moreover, this rate increases by
48 kg C ha−1 yr−1 under 0.63% clay content. On the other hand, increasing SOC content
from the baseline to 0.02 kg C ha−1 and 0.03 kg C ha−1 tends to decreases C sequestration
rate by 90 kg C ha−1 yr−1 and 111 kg C ha−1 yr−1, respectively. However, decreasing SOC
content to 0.005 kg C ha−1 raises this rate by 96 kg C ha−1 yr−1. Moreover, increasing soil
pH from 7.6 to 9.6 and 8.9 leads to an increased C sequestration rate by 30 kg C ha−1 yr−1

and 28 kg C ha−1 yr−1, respectively. Similarly, by decreasing soil pH by 5.3, C sequestration
rate increases by 27 kg C ha−1 yr−1. However, a decrease in pH soil from the baseline to
6.5 tends to decrease C sequestration rate by 87 kg C ha−1 yr−1. Furthermore, the calculated
sensitivity index for the impacts of soil properties listed in Table 2 indicates that the SOC
was positively correlated with soil clay content and soil pH, and negatively associated with
initial SOC. According to our modeling study, we can conclude that SOC improved under
0.63% of clay content, acidic and alkaline soil pH conditions (5.3, 8.9, and 9.6), with low
initial SOC content (0.005 kg C kg−1).

Table 2. Calculated sensitivity indices quantifying the sensitivity of modeled SOC stocks to the
variability of the inputs parameters.

Parameter Baseline Range Tested Sensitivity Index (SI) of
SOC Stocks

Annual temperature (◦C) 23 Decrease by 2 ◦C and 4 ◦C
and increase by 2 ◦C and 4 ◦C −0.2

Total annual precipitation (mm) 450 Decrease by 10% and 20% and
increase by 10% and 20% 0.04

Clay content% 50.5% 0.19, 0.34, 0.4, 0.63 0.03

Initial SOC content (kg C kg −1) 0.01 0.005, 0.02, 0.03 −0.03

Soil pH 7.6 5.3, 6.5, 8.9, 9.6 0.003
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3.2. SOC Changes under Alternative Climatic Factors

Precipitation and temperature are key determinants of SOC decomposition [31,59,60].
Four scenarios of alternative T were run for the selected site in Merchouch for nine years.
The simulation results showed that the 9-year average SOC changes would increase by 1%
and 3.4% and decrease by 1.3% and 4% by decreasing and increasing T by 2 ◦C and 4 ◦C,
respectively (Figure 6). Similarly, four scenarios were set for P by considering a decrease
or increase percentage of 10% and 20% for each rainfall event at daily time step. On one
hand, our modeled results indicate that a precipitation increase of 10% and 20% from the
baseline would raise the SOC stock by 0.1% and 0.5%, respectively (Figure 7). On the other
hand, decreasing P by 10% and 20% decreases the SOC stock by 0.1% and 1.4%, respectively.
Our simulations showed that the rate of C sequestration was slower under higher T in
this study site. In details, increasing air T by 2 ◦C and 4 ◦C from the baseline decreases C
sequestration rate by 99 kg C ha−1 yr−1 and 93 kg C ha−1 yr−1, respectively (Figure 8). In
contrast, C sequestration rate increased by 39 kg C ha−1 yr−1 and 161 kg C ha−1 yr−1 when
decreasing T by 2 ◦C and 4 ◦C, respectively. Furthermore, the difference in C sequestration
rate between the baseline and alternative P scenarios would range from -67 kg C ha−1 yr−1

to 21 kg C ha−1 yr−1 (Figure 8). This finding underlined the importance of the climate
on SOC accumulation. The sensitivity index presented in Table 2 indicated a negative
correlation between SOC and T, and a positive one with P. Our model results revealed that
the SOC was more sensitive to T than P in Merchouch station.
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4. Discussion

The sensitivity analysis conducted in the present work assessed separately the impact
of five input parameters on simulating SOC changes in DNDC model. The sensitivity index
of each input presented in Table 2. ranged from 0.003 to 0.2. The modeled data showed
that the DNDC was more sensitive to temperature in climatic factors followed by initial
SOC and clay content in soil properties over the nine simulated years. Many researchers
support our findings and confirm that DNDC model was more sensitive to temperature,
initial SOC, and clay content [60–62].
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Our simulations predicted an important SOC depletion under warmer scenarios. This
loss of SOC under elevated temperature can be explained by several candidate mechanisms.
On one hand, the microbial activities are dense under elevated soil temperature, which leads
to accelerated SOC decomposition rate [62–66]. On the other hand, high soil respiration
positively correlated with increased temperature, decreases SOC accumulation, especially
under semi-arid environments [67]. Global-scale studies had also revealed that the functions
and activities of microorganisms including respiration, growth, and the substrate uptake,
are dependent greatly to temperature variations [68–70]. Some quantitative studies have
also stated that under warming conditions, SOC decomposition is mainly controlled by
the structural and functional changes in the microbial community [71]. Another study [63]
assessed that an increase in air temperature would effectively cause an SOC loss, which
supports our findings.

In semi-arid agricultural regions where rain-fed crops dominate, changes in precip-
itation patterns have a potential influence on SOC content and its dynamics [67]. Our
finding pointed out that temperature was more sensitive than precipitation in the study
site; however, the impact of precipitation on SOC cannot be ignored. It is known that
precipitation is one of the most important factors controlling SOC cycling [72]. Our model
results showed that an increase in precipitation patterns by 10% and 20% could improve C
sequestration rates in the soil by 12 and 21 kg C ha−1 yr−1, respectively. In contrast, the
SOC loss is possible as results of reduction in soil moisture due to less precipitation. This
finding is consistent with further studies [73–76], which revealed that C sequestration rate
increases as precipitation increases. On one hand, SOC accumulation can be affected by soil
moisture by influencing the quantity of plants’ C input to soils, as well as the decomposition
rate of those C inputs [77]. On the other hand, water availability and its spatial distribution
in soil matrix can affect the spatial accessibility and degradability of SOC for decomposers,
and then change the SOC decomposition process [78]. Many previous modeling studies
have stated a relationship between SOC accumulation and soil moisture, in line with our
findings. For example, Post et al. [79] and Tayebi et al. [27] pointed out that soil C density
increases due to improved crop production under rainfed farming systems characterized by
high soil moisture. Similarly, Zhang et al. [80] indicated that SOC accumulation is expected
to be slower under high demand areas for mined groundwater. Similarly, Grogan et al. [81]
acquired also the same results using the DNDC model. Antecedent studies conducted in
regions, with similar environmental conditions to our study area, has proved that lower
water availability due to drought periods in semi-arid regions limits the increase of C
inputs, and therefore leads to SOC depletion [67,80,82].

However, the results of the current study do not support some previous research.
Peinetti et al. [83] showed that excessive water from heavy rainfall events leads to nitrogen
leaching from the upper layer of soil to deeper ones, and thus decreases crop biomass. Con-
sequently, the low returns of the crop residues to the soil decrease SOC stocks. Our outcome
is also contrary to that of Meier and Leuschner [84], who found that SOC continuously
decreases with high annual precipitation (>900 mm yr−1) compared to low (<600 mm yr−1).

The simulations carried out in the present study revealed that, the variation of soil
properties was reflected on the modeled SOC stocks. Within the DNDC, a sensibility test of
modeled SOC to clay content, initial SOC, and soil pH was conducted. The results clearly
indicate that SOC was primarily sensitive to initial SOC in soil variability. According to the
calculated SI, SOC had a negative correlation with initial SOC parameter. Our modeled
results found also that soil with greater initial SOC displayed greater SOC loss. This finding
are consistent with previous studies [41,85,86]. The labile organic C components are a
major energy source for microbes, resulting in a higher soil respiration and thus a reduced
amount of C stored in the soil [87–92]. Soils with high initial SOC content provide a good
environment for microbe’s communities, witch increase microbial activities and growth,
and accelerate decomposition rate; leading to decreased C sequestration rate [93]. Another
study carried out under similar environmental conditions using the DNDC, emphasized
that low initial SOC conditions were apparently favorable for SOC accumulation [80].
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Similarly, Matus et al. [94] and Paul [95] emphasized that soils with lower initial SOC
content enable larger ability for enhancing C pool accumulation. Higher SOC sequestration
rates were observed on sites with low initial SOC content under semi-arid conditions [96].

It can be seen clearly thought our simulations that modeled SOC in DNDC is also
sensitive to clay content following initial SOC. A positive correlation have been obtained
from calculated SI between clay content and SOC changes (Table 2). Under 0.63% of clay
content, the C sequestration rate increases by 48 kg C ha−1 yr−1 (Figure 5). This clay
effect can be explained by the mechanism proposed by Six et al. [35], who explains that
the very small spaces between clay particles can trapped soil organic matter inside it,
which limits microorganism’s accessibility; and thus reduce SOC decomposition. Large
area of fine clay fractions favors the generation of organo-mineral complexes that protect
C against microbial oxidation [97–99]. Our results are in line with previous works. For
example, Chellappa et al. [100], Camaratto et al. [101], and Liu et al. [102], highlighted a
great association between SOC accumulation and high clay content soil compared to poor
ones under similar environmental conditions. It was concluded that Merchouch station
have a higher potential for SOC sequestration under high clay content condition. This
result is in line with the results obtained by Moussadek et al. [53].

In this study, soil pH is identified to be the least sensitive parameter among the tested
factors. This outcome is in agreement with a previous study using DNDC [73]. How-
ever, our modeled results showed that under alkaline condition with soil pH ranging
from 8.9 to 9.6, an increase by 30 and 28 kg C ha−1 yr−1 in C sequestration rate was ob-
served (Figure 5). Similarly, under acidic soil pH condition, the C sequestration would
increase by 27 kg C ha−1 yr−1. On the other hand, nearly neutral pH value tends to de-
crease C sequestration rate by 87 kg C ha−1 yr−1. These outcomes are in line with other
studies [103,104]. Soils with an alkaline soil pH produce an unfavorable environment for
microbial growth [87,105], thereby benefiting SOC sequestration. Furthermore, microor-
ganisms have difficulty to survive and growth under acidic soil pH conditions, which
represents an antipathetic environment [40]. On the other hand, nearly neutral pH value for
soils provide a favorable living environment for microbes communities, which accelerate
SOC decomposition, and thus resulting in low C sequestration rate [106].

5. Conclusions

Our study conducted at Merchouch station, a semi-arid region in Morocco with a
structured dataset, on midterm based on DNDC model. A sensitivity analysis within the
DNDC was carried out, with the priority of each input parameter separately, to identify the
more impacting parameters on SOC dynamics. The effective use of this sensitivity analysis
can provide an insight into the quality of the model prediction. The simulations highlighted
that the temperature is the most influential parameter for simulating SOC changes in
DNDC. The C sequestration was large during simulated years when temperatures were
small, and vice versa. Moreover, various variable soil properties play a crucial role in
the C sequestration as well. The initial SOC and clay content can be considered also as
sensitive factors in soil properties parameters following temperature in climatic factors.
However, soil pH had less sensitivity to modeled SOC. With the guidance of sensitivity
analysis, more scientific policies and reasonable measures could be applied for an efficient
carbon sequestration, in order to alleviate the negative effect of several scenarios. The
present study represents the modeled SOC changes that are attributable to each single
input parameter separately. Further studies will be needed to analyze the combined effects
of inputs parameters on SOC, knowing that most of the parameters (e.g., climatic factors)
act collectively, and simultaneously rather than separately on SOC dynamics.
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