Skip to main content

Rapid Generation Advancement for Accelerated Plant Improvement

  • Chapter
  • First Online:
Frontier Technologies for Crop Improvement

Abstract

In 2020, more than 800 million people suffered from hunger, and this number will continue to rise as the world’s population increases, in addition to heightening the consequences of climate change and the probability of increasing the risk of wars. We cannot continue to use the conventional breeding techniques employed 50 years ago, which require 7–10 years to develop a high-yielding and stable variety. Several technologies, including shuttle breeding, off-season planting, tissue culture (embryo rescue), doubled haploid (DH), marker-assisted selection (MAS), high-throughput genotyping, genomic selection (GS), plant transformation, speed breeding, and genome editing, have been developed for rapid generation advancement (RGA). Utilizing these technologies can expedite the development of climate-resilient plant varieties with enhanced yield and resilience to biotic and abiotic challenges. This chapter goes deep into these technologies and approaches that have emerged in the last 10 years and could be used to accelerate crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah NA, Hamwieh A, Radwan K, Fouad N, Prakash C (2021) Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger. GM Crops Food 12(2):601–615. https://doi.org/10.1080/21645698.2021.2021724. Epub 2022 Feb 9

    Article  PubMed  Google Scholar 

  • Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6(4):183–205

    Article  PubMed  Google Scholar 

  • Abe K, Araki E, Suzuki Y, Toki S, Saika H (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem 131:58–62

    Article  CAS  PubMed  Google Scholar 

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11(9):1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Able JA, Bassi FM, Christopher J, Hickey LT (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Methods 14(1):1–15

    Article  Google Scholar 

  • Ali AM, Mustafa HM, Tahir IS, Elahmadi AB, Mohamed MS, Ali MA, Suliman AM, Baum M, Ibrahim AES (2006) Two doubled haploid bread wheat cultivars for irrigated heat-stressed environments. Sudan J Agric Res 6:35–42

    Google Scholar 

  • Barman HN, Sheng Z, Fiaz S, Zhong M, Wu Y, Cai Y, Wang W, Jiao G, Tang S, Wei X, Hu P (2019) Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biol 19(1):1–9

    Article  Google Scholar 

  • Bennett RG, Ribalta FM, Pazos-Navarro M, Leonforte A, Croser JS (2017) Discrimination of boron tolerance in Pisum sativum L. genotypes using a rapid, high-throughput hydroponic screen and precociously germinated seed grown under far-red enriched light. Plant Methods 13(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW (2018) High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3: Genes, Genomes. Genetics 8(5):1513–1521

    CAS  Google Scholar 

  • Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14(12):2203–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan JP, Martin PJ (2007) Returns to investment in new breeding technologies. Euphytica 157(3):337–349

    Article  Google Scholar 

  • Bugbee B, Koerner G (1997) Yield comparisons and unique characteristics of the dwarf wheat cultivar ‘USU-Apogee’. Adv Space Res 20(10):1891–1894

    Article  CAS  PubMed  Google Scholar 

  • Bula RJ, Morrow RC, Tibbitts TW, Barta DJ, Ignatius RW, Martin TS (1991) Light-emitting diodes as a radiation source for plants. HortScience 26(2):203–205

    Article  CAS  PubMed  Google Scholar 

  • Cha JK, Lee JH, Lee SM, Ko JM, Shin D (2020) Heading date and growth character of Korean wheat cultivars by controlling photoperiod for rapid generation advancement. Korean Society of Breeding Science 52(1):20–24

    Article  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charmet G, Tran LG, Auzanneau J, Rincent R, Bouchet S (2020) BWGS: AR package for genomic selection and its application to a wheat breeding programme. PLoS One 15(4):e0222733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary HK, Badiyala A, Jamwal NS (2015) New frontiers in doubled haploidy breeding in wheat. Agric Res J 52(4):1–12

    Google Scholar 

  • Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1491):557–572

    Article  CAS  Google Scholar 

  • Covarrubias-Pazaran G, Martini JW, Quinn M, Atlin G (2021) Strengthening Public Breeding Pipelines by Emphasizing Quantitative Genetics Principles and Open-Source Data Management. Front Plant Sci 12

    Google Scholar 

  • Crossa J, Campos, de los G, Pérez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Li R, Li G, Zhang F, Zhu T, Zhang Q, Ali J, Li Z, Xu S (2020) Hybrid breeding of rice via genomic selection. Plant Biotechnol J 18(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Das A, Ghana P, Rudrappa B, Gandhi R, Tavva VS, Mohanty A (2021) Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement. In: Rice Genome Engineering and Gene Editing. Humana, New York, NY, pp 115–134

    Chapter  Google Scholar 

  • De Buyser J, Henry Y, Lonnet P, Hertzog R, Hespel A (1987) ‘Florin’: a doubled haploid wheat variety developed by the anther culture method. Plant Breed 98(1):53–56

    Article  Google Scholar 

  • Deery DM, Rebetzke GJ, Jimenez-Berni JA, Bovill WD, James RA, Condon AG, Furbank RT, Chapman SC, Fischer RA (2019) Evaluation of the phenotypic repeatability of canopy temperature in wheat using continuous-terrestrial and airborne measurements. Front Plant Sci 10:875

    Article  PubMed  PubMed Central  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601

    Article  CAS  PubMed  Google Scholar 

  • D'Halluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, Pennewaert A, D’Hont K, Bossut M, Jantz D, Ruiter R, Broadhvest J (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11(8):933–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant genome 4(3):250–255

    Article  Google Scholar 

  • Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6(1):1–9

    Article  Google Scholar 

  • FAO (2018) Food outlook – biannual report on the global food markets, Nov 2018. Rome. p104. License CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Fasol G, Nakamura S (1997) The Blue Laser Diode

    Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L, Jones S (2020) Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol 38(5):579–581

    Article  CAS  PubMed  Google Scholar 

  • Gasparis S, Przyborowski M, Kała M, Nadolska-Orczyk A (2019) Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease affects the regulation of cytokinin metabolism and root morphology. Cell 8(8):782

    Article  CAS  Google Scholar 

  • Gaur PM, Samineni S, Gowda CLL, Rao BV (2007) Rapid generation advancement in chickpea. J SAT Agric Res 3(1)

    Google Scholar 

  • Gaur PM, Samineni S, Thudi M, Tripathi S, Sajja SB, Jayalakshmi V, Mannur DM, Vijayakumar AG, Ganga Rao NV, Ojiewo C, Fikre A (2019) Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breed 138(4):389–400

    Article  CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protocols 13(12):2944–2963

    Article  CAS  PubMed  Google Scholar 

  • Giura A (2007) Haploids and doubled haploid lines production by Zea system in Triticum durum and Triticale. In: Cercetări ştiinţifice, Horticultură, Inginerie Genetică, vol XI. Ed. Agroprint, USAMVB, Timişoara, pp. 32–37

    Google Scholar 

  • Grenier C, Cao TV, Ospina Y, Quintero C, Châtel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One 10(8):e0136594

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley SD, Johnson JJ, Peairs FB, Stromberger JA, Hudson-Arns EE, Seifert SA, Anderson VA, Bai G, Chen X, Bowden RL, Jin Y (2018) Registration of ‘Avery’hard red winter wheat. Journal of Plant Registrations 12(3):362–366

    Article  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940

    Article  CAS  PubMed  Google Scholar 

  • Heffner, E. L., Sorrells, M. E., and Jannink, J. L. (2009). Genomic selection for crop improvement

    Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):64

    Article  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, German S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37(7):744–754

    Article  CAS  PubMed  Google Scholar 

  • Honsdorf N, March TJ, Pillen K (2017) QTL controlling grain filling under terminal drought stress in a set of wild barley introgression lines. PLoS One 12(10):e0185983

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H (1997) In vitro induced haploids in wheat. In: In vitro haploid production in higher plants. Springer, Dordrecht, pp 73–97

    Chapter  Google Scholar 

  • Hu X, Meng X, Liu Q, Li J, Wang K (2018) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16(1):292–297

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Knapp S, Schmidhalter U (2020) Advancing high-throughput phenotyping of wheat in early selection cycles. Remote Sens 12(3):574

    Article  Google Scholar 

  • Humphreys DG, Knox RE (2015) Doubled haploid breeding in cereals. In: Al-Khayri JM et al (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer International Publishing, New York. https://doi.org/10.1007/978-3-319-22521-0_9

    Chapter  Google Scholar 

  • Idrissi O (2020) Application of extended photoperiod in lentil: Towards accelerated genetic gain in breeding for rapid improved variety development. Moroccan J Agric Sci 1(1)

    Google Scholar 

  • Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128(1):145–158

    Article  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9(2):166–177

    Article  CAS  PubMed  Google Scholar 

  • Ji J, Zhang C, Sun Z, Wang L, Duanmu D, Fan Q (2019) Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9. Int J Mol Sci 20(10):2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37(3):287–292

    Article  CAS  PubMed  Google Scholar 

  • Khan MSS, Basnet R, Islam SA, Shu Q (2019) Mutational analysis of OsPLDα1 reveals its involvement in phytic acid biosynthesis in rice grains. J Agric Food Chem 67(41):11436–11443

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Kim YA, Moon H, Park CJ (2019) CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice 12(1):1–13

    Article  Google Scholar 

  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17(6):1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitomi Y, Hanzawa E, Kuya N, Inoue H, Hara N, Kawai S, Kanno N, Endo M, Sugimoto K, Yamazaki T, Sakamoto S (2020) Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc Natl Acad Sci 117(35):21242–21250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018a) Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol 177(4):1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018b) Fast-forwarding genetic gain. Trends Plant Sci 23(3):184–186

    Article  CAS  PubMed  Google Scholar 

  • Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016) Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2:16139

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L (2019) CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19(1):1–13

    Article  Google Scholar 

  • Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L (2018c) Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem 66(34):9042–9051

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C, Li H, Hao M, Xiong D, Luo Y, Huang C, Yuan Q, Zhang J, Xia N (2016) Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing of HSV-1 virus in human cells. Sci Rep 6(1):1–13

    Google Scholar 

  • Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2020) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71(4):1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE (2014) Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166(3):1288–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lulsdorf MM, Banniza S (2018) Rapid generation cycling of an F2 population derived from a cross between Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breed 137(4):486–491

    Article  CAS  Google Scholar 

  • Ma C, Zhu C, Zheng M, Liu M, Zhang D, Liu B, Li Q, Si J, Ren X, Song H (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Horticul Res 6(1):1–15

    Article  Google Scholar 

  • Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X (2016) Ta GS 5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 14(5):1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannur DM, Babbar A, Thudi M, Sabbavarapu MM, Roorkiwal M, Sharanabasappa BY, Bansal VP, Jayalakshmi SK, Yadav SS, Rathore A, Chamarthi SK (2019) Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Mol Breed 39(1):1–13

    Article  CAS  Google Scholar 

  • Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T (2020) Genome edited crops touch the market: a view on the global development and regulatory environment. Front Plant Sci 11

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-enabled multiplex genome editing and its application. Prog Mol Biol Transl Sci 149:111–132

    Article  CAS  PubMed  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2015) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Develop Biol-Plant 51(1):71–79

    Article  CAS  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2016) Low red: far-red light ratio causes faster in vitro flowering in lentil. Can J Plant Sci 96(5):908–918

    Article  CAS  Google Scholar 

  • Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cell Develop Biol-Plant 52(5):530–536

    Article  CAS  Google Scholar 

  • Nawaz G, Usman B, Peng H, Zhao N, Yuan R, Liu Y, Li R (2020) Knockout of pi21 by crispr/cas9 and itraq-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes 11(7):735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):1–6

    Article  CAS  Google Scholar 

  • Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361(6408):1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li C, Nguyen H, Liu B, Auguy F (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37(11):1344–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128(1):41–53

    Article  PubMed  Google Scholar 

  • Panjabi P, Yadava SK, Kumar N, Bangkim R, Ramchiary N (2019) Breeding Brassica juncea and B. rapa for sustainable oilseed production in the changing climate: progress and prospects. In: Genomic Designing of Climate-Smart Oilseed Crops. Springer, Cham, pp 275–369

    Chapter  Google Scholar 

  • Park JJ, Yoo CG, Flanagan A, Pu Y, Debnath S, Ge Y, Ragauskas AJ, Wang ZY (2017) Defined tetra-allelic gene disruption of the 4-coumarate: coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol Biofuels 10(1):1–11

    Article  Google Scholar 

  • Pauk J, Kertész Z, Beke B, Bóna L, Csösz M, Matuz J (1995) New winter wheat variety: ‘GK Délibáb’ developed via combining conventional breeding and in vitro androgenesis. Cereal Res Commun 23:251–256

    Google Scholar 

  • Pérez L, Soto E, Villorbina G, Bassie L, Medina V, Muñoz P, Capell T, Zhu C, Christou P, Farré G (2018) CRISPR/Cas9-induced monoallelic mutations in the cytosolic AGPase large subunit gene APL2 induce the ectopic expression of APL2 and the corresponding small subunit gene APS2b in rice leaves. Transgenic Res 27(5):423–439

    Article  PubMed  Google Scholar 

  • Pérez P, de Los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez P, de Los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3(2):106

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, Dreisigacker S (2012) Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3: Genes| Genomes|. Genetics 2(12):1595–1605

    Google Scholar 

  • Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dC as9-based transcription factors. Plant Biotechnol J 13(4):578–589

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103–113

    CAS  Google Scholar 

  • Rai AC, Rai KK (2022) Speed breeding for rapid cycling of crops for stress management and global food security. In: Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham, pp 23–37

    Chapter  Google Scholar 

  • Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T (2019) Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci 20(10):2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren B, Liu L, Li S, Kuang Y, Wang J, Zhang D, Zhou X, Lin H, Zhou H (2019) Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol Plant 12(7):1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Riaz A, Periyannan S, Aitken E, Hickey L (2016) A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12(1):1–10

    Article  CAS  Google Scholar 

  • Ribalta FM, Pazos-Navarro M, Nelson K, Edwards K, Ross JJ, Bennett RG, Munday C, Erskine W, Ochatt SJ, Croser JS (2017) Precocious floral initiation and identification of exact timing of embryo physiological maturity facilitate germination of immature seeds to truncate the lifecycle of pea. Plant Growth Regul 81(2):345–353

    Article  CAS  Google Scholar 

  • Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, Von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126(11):2803–2824

    Article  CAS  PubMed  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y (2016) Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, Reyes VP, Tiwari A, Maurya AK, Croser JS, Wani SH (2022) Breeding More Crops in Less Time: A Perspective on Speed Breeding. Biology 11(2):275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samineni S, Sen M, Sajja S, Gaur P (2019) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J 8:164–169

    Article  Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2020) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. Crop J 8(1):164–169

    Article  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, non-transgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910

    Article  PubMed  Google Scholar 

  • Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV et al (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Săulescu NN, Ittu G, Giura A, Mustătea P, Ittu M (2012) Results of using Zea method for doubled haploid production in wheat breeding at Nardi Fundulea – Romania. Rom Agric Res 29:3–8

    Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26(9):3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Saxena RK, Hickey LT, Varshney RK (2019) Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica 215(12):1–7

    Article  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  PubMed  Google Scholar 

  • Songmei LIU, Jie JIANG, Yang LIU, Jun MENG, Shouling XU, Yuanyuan TAN, Youfa LI, Qingyao SHU, Jianzhong HUANG (2019) Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice. Rice Sci 26(2):88–97

    Article  Google Scholar 

  • Sood S, Dwivedi S (2015) Doubled haploid platform: an accelerated breeding approach for crop improvement. In: Plant biology and biotechnology. Springer, New Delhi, pp 89–111

    Chapter  Google Scholar 

  • Spindel J, Be Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink JL, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982

    Article  PubMed  PubMed Central  Google Scholar 

  • Stutte GW (2015) Commercial transition to LEDs: A pathway to high-value products. HortScience 50(9):1297–1300

    Article  Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadesse W, Amri A, Ogbonnaya FC, Sanchez-Garcia M, Sohail Q, Baum M (2016) Wheat. In: Genetic and Genomic Resources for Grain Cereals Improvement. Academic Press, pp 81–124

    Chapter  Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y (2017a) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017b) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3(3):1–5

    Article  Google Scholar 

  • Tian S, Jiang L, Cui X, Zhang J, Guo S, Li M, Zhang H, Ren Y, Gong G, Zong M, Liu F (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37(9):1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2(1):1–11

    Article  CAS  Google Scholar 

  • Tuvesson S, Von Post R, Ljungberg A (2003) Wheat anther culture. In: Doubled Haploid Production in Crop Plants. Springer, Dordrecht, pp 71–76

    Chapter  Google Scholar 

  • Van Oort PA, Zwart SJ (2018) Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob Chang Biol 24(3):1029–1045

    Article  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wang T, Voogd C, Jeon S, Drummond RS, Gleave AP, Allan AC (2019) Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol J 17(5):869–880

    Article  CAS  PubMed  Google Scholar 

  • Wan DY, Guo Y, Cheng Y, Hu Y, Xiao S, Wang Y, Wen YQ (2020) CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticul Res 7(1):1–14

    Article  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Xu Y, Li W, Chen Z, Wang J, Fan F, Tao Y, Jiang Y, Zhu QH, Yang J (2021) Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. Crop J 9(2):305–312

    Article  Google Scholar 

  • Wang S, Yang Y, Guo M, Zhong C, Yan C, Sun S (2020) Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. Crop J 8(3):457–464

    Article  Google Scholar 

  • Wang W, Pan Q, He F, Akhunova A, Chao S, Trick H, Akhunov E (2018b) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Simmonds J, Pan Q, Davidson D, He F, Battal A, Akhunova A, Trick HN, Uauy C, Akhunov E (2018c) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131(11):2463–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2018a) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J (2019) High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. GigaScience 8(11):giz120

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Du Y, Yang Z, Chen L, Condon AG, Hu YG (2015) Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crop Res 179:35–43

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MAM, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Wessel E, Botes WC (2014) Accelerating resistance breeding in wheat by integrating marker assisted selection and doubled haploid technology. South Afr J Plant Soil 31:35–43

    Article  Google Scholar 

  • Wiśniewska H, Majka M, Kwiatek M, Gawlowska M, Surma M, Adamski T, Kaczmarek Z, Drzazga T, Lugowska B, Korbas M, Belter J (2019) Production of wheat doubled haploids resistant to eyespot supported by marker-assisted selection. Electron J Biotechnol 37:11–17

    Article  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Qin G, Si P, Luo Z, Gao J, Chen X, Zhang J, Wei P, Xia Q, Lin F, Yang J (2017) Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth. Physiol Plant 160(2):222–239

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):1–4

    Article  CAS  Google Scholar 

  • Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43(8):529

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ma K, Zhao Y, Wang X, Zhou K, Yu G, Li C, Li P, Yang Z, Xu C, Xu S (2021) Genomic selection: A breakthrough technology in rice breeding. Crop J 9:669–677

    Article  Google Scholar 

  • Yang CH, Zhang Y, Huang CF (2019) Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. J Integr Agric 18(3):688–697

    Article  CAS  Google Scholar 

  • Yao Y, Zhang P, Liu H, Lu Z, Yan G (2017) A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture (PCTOC) 128(3):655–661

    Article  CAS  Google Scholar 

  • Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020) Rational improvement of Rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci 10:1663

    Article  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39(3):1–10

    Article  Google Scholar 

  • Zhang H, Xu H, Feng M, Zhu Y (2018a) Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnol J 16(1):18–26

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Zhang Y, Yin H (2019b) Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther 27(4):735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang H, Botella JR, Zhu JK (2018b) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60(5):369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Ge X, Shen P, Li W, Liu X, Cao Q, Zhu Y, Cao W, Tian Y (2019c) Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens 11(4):387

    Article  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91(4):714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li J, Chen S, Ma X, Wei H, Chen C, Gao N, Zou Y, Kong D, Li T, Liu Z (2020) An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Gen Genomics 295(4):941–956

    Article  CAS  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7(1):1–8

    Google Scholar 

  • Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019d) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17(8):1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Lu ZX, Park JW, Zhou Q, Xing Y (2013) GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data. Genome Biol 14(7):1–15

    Article  Google Scholar 

  • Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J (2018) Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci 115(12):3174–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamwieh, A. et al. (2024). Rapid Generation Advancement for Accelerated Plant Improvement. In: Pandey, M.K., Bentley, A., Desmae, H., Roorkiwal, M., Varshney, R.K. (eds) Frontier Technologies for Crop Improvement. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-99-4673-0_5

Download citation

Publish with us

Policies and ethics