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Abstract Identification and exploration of the

genetic architecture of traits related to yield, quality,

and drought and heat tolerance is important for yield

and quality improvement of wheat through marker-

assisted selection. One hundred and ninety-two spring

wheat genotypes were tested at two heat-stress loca-

tions in Sudan (Wad Medani and Dongula), a drought

stress site in Morocco (Marchouch) and a site with

high yield potential in Egypt (Sids) in replicated trials

during the 2015–2016 and 2016–2017 cropping sea-

sons. A total of 10,577 single nucleotide polymor-

phism markers identified from the 15 K wheat SNP

assay were used in a genome-wide association (GWA)

study and genomic prediction for 16 phenotypic traits

related to yield, quality and drought and heat toler-

ance. Significant marker-trait associations were

detected across GWAS models for all traits. Most

detected marker-trait associations (MTAs) were envi-

ronment-specific, signifying the presence of high

quantitative trait loci-by-environment (QTL x E)

interaction. Chromosome arm 5AL had significant

multi-model MTAs for grain yield and yield-related

traits at the heat-stress locations. Highly significant

QTLs were detected on chromosome 2D for waxiness.

Homoeologous group 2 and 6 chromosomes were with

significant MTAs for grain protein content, gluten

content, alveograph strength and Zeleny sedimenta-

tion test while chromosome arm 3BL was significant

for both Z and W traits. Genomic prediction analysis

with ridge regression-best linear unbiased prediction

model estimated the breeding values of the studied

traits with prediction accuracies ranging from 0.16 for
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leaf rolling to 0.72 for peduncle length. The identified

QTLs could be targeted for marker-assisted selection

or further studies aimed at fine mapping and cloning

the causative genes and detecting favorable haplo-

types with positive effects for agronomic, physiolog-

ical or quality-related traits.

Keywords Common wheat � GWAS � Genomic

selection � SNP � Agronomic traits � Abiotic stress

Introduction

Bread wheat (Triticum aestivum L., 2n = 6x = 42), as

one of the major food crops, providing approximately

19% of calory and 21% of protein needs of human

populations (Braun et al. 2010). Meeting the demand

of wheat production for the ever-increasing world

population is a challenging task.

The challenge of meeting the increasing demand for

wheat in developing countries is increasing due to

rapid population growth coupled with the effects of

climate change (Lobell et al. 2011). Hence, breeders

actively develop varieties with higher yield and yield

stability, resistance to biotic and abiotic stresses, and

quality parameters that fulfill the requirements for

specific end–products.

Grain yield is an outcome from an aggregation of

several agronomic and physiological traits (Chen et al.

2012; Sukumaran et al. 2018; Tshikunde et al. 2019;

Jamil et al. 2019). Agronomic traits for attention

include grain number per spike, thousand kernel

weight, above-ground biomass, plant height, whereas

important phenological traits include heading and

maturity dates as the grain filling period under specific

seasonal conditions has an enormous effect on final

grain yield (Reif et al. 2011b; Ihsan et al. 2016; Sun

et al. 2017; Wang et al. 2017; Ma et al. 2018; Liu et al.

2018; Li et al. 2020). Drought and heat stresses are the

two most important environmental constraints that

curtail wheat production globally. These stresses

cause various physiological changes in plants leading

to accelerated growth and premature senescence

which in turn reduce yield potential. Various physi-

ological traits, including chlorophyll content, canopy

temperature, stomatal conductance, waxiness (glau-

cousness), and leaf rolling have been targeted as

adaptive traits in abiotically stressed environments

and it is important to understand their roles in grain

yield performance in heat/drought affected environ-

ments (O’Toole et al. 1979; Reynolds et al. 2007;

Reynolds and Tuberosa 2008; Saint Pierre et al. 2010;

Paliwal et al. 2012; Cossani and Reynolds 2012;

Adamski et al. 2013; Guo et al. 2016). In addition to

yield and yield-related agronomic and physiologic

traits, grain quality traits are also crucial since they

determine the unique characteristics and value of a

wide range of end-use products such as pan bread,

cookies, cakes, and pastries. Several physical and

chemical properties contribute to the quality of bread

wheat. Quality parameters determined by grain protein

content, gluten content, dough rheological properties,

and Zeleny sedimentation test are targeted for wheat

quality (Zanetti et al. 2001; Groos et al. 2004; Reif

et al. 2011a; Carter et al. 2012; Würschum et al. 2016;

Battenfield et al. 2018; Guo et al. 2020).

With the surge in high throughput sequencing

technologies, GWAS has become a widely used

approach to identify genes and dissect QTLs in plants

for almost all traits (Brachi et al. 2011). GWAS

overcomes the two common limitations (i.e. restricted

allelic diversity and limited genomic resolution) of the

bi-parental QTL mapping approach (Brachi et al.

2011). The main challenge for GWAS is control of

false positives caused by population structure and

family relatedness (Kaler et al. 2020). This problem

has been addressed by incorporating these two

confounding factors as covariates using the mixed

linear model (MLM) (Price et al. 2006). However, due

to overfitting, this model frequently leads to false-

negatives that might exclude key loci. Multi-locus

GWAS analysis methodologies such as multiple locus

mixed linear model (MLMM), fixed and random

model circulating probability unification (FarmCPU)

and Bayesian-information and linkage-disequilibrium

iteratively nested keyway (BLINK) have emerged to

overcome false-negatives (Zhang et al. 2019). In

MLMM, marker association tests are used to select

associated markers that are fitted as cofactors for

marker tests. The cofactors are then adjusted through

forward and backward stepwise regression in the

mixed model (Segura et al. 2012). FarmCPU is a more

recently developed multi-locus GWAS model with

robust tradeoffs for controlling false-positives without

compromising false negatives (Liu et al. 2016).

FarmCPU uses the MLMM model and incorporates

multiple markers simultaneously as covariates in a
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stepwise MLM to partially remove the confounding

effect between tested markers and kinship. This model

uses both the fixed-effect model (FEM) and random

effect model (REM) iteratively to eliminate confound-

ing factors. The FEM encompasses testing markers

and multiple associated markers as covariates to

control false positives whereas REM estimates kinship

using associated markers that prevent model overfit-

ting (Liu et al. 2016). However, the REM model in

FarmCPU demands high computing effort for large

numbers of individuals. A new multi-locus model

known as BLINK was developed to overcome this

limitation (Huang et al. 2019). This model approxi-

mates maximum likelihood using Bayesian informa-

tion criterion (BIC) in a FEM model. BLINK also

removes the assumption that causal genes are evenly

distributed across the genome as required by the

SUPER and FarmCPU methods, making the model

superior in statistical power with discovery of less

false-positives (Huang et al. 2019). Genomic predic-

tion is effectively used in several crop plants to predict

the genotypic estimated breeding values (GEBVs) of

individuals solely based on their overall genome-wide

marker effects without the need of phenotyping

(Meuwissen et al. 2001; Crossa et al. 2017). This

method overcomes the limitation of GWAS or other

linkage-based mapping methods by including QTLs

with minor effects (i.e., QTLs below a specified

significance threshold) and has been used in several

plant breeding programs (Crossa et al. 2017).

The objective of this study was to identify QTLs for

16 agronomic, physiologic and quality traits and to

predict the genomic breeding values of these traits. To

accomplish this, 192 spring bread wheat genotypes

was assembled from International Center for Agricul-

tural Research in the Dry Areas (ICARDA) materials

and grown at four different locations in Egypt,

Morocco and Sudan with contrasting environmental

conditions for two consecutive years.

Materials and methods

Plant materials

A panel of 192 spring bread wheat genotypes from

ICARDA were assembled for this study. The pedi-

grees and selection histories of these genotypes are

provided in Table S1. This panel comprised a set of

synthetic derivatives, cultivars from Central and West

Asia and North Africa (CWANA) region, and elite

breeding lines from ICARDA’s shuttle breeding

program (Tadesse et al. 2016).

Phenotyping

Field evaluations were carried out at four locations

including two sites in Sudan (Dongula and Wad

Medani), Sids in Egypt andMarchouch inMorocco for

two years (2015–16 and 2016–17). Wad Medani

station is located at 14�2400400 North and 33�3101100
East at 410 masl and is a global field trial platform for

heat tolerance studies managed by a collaboration of

the Agricultural Research Corporation of Sudan,

International Maize and Wheat Improvement Center

(CIMMYT) and ICARDA. The annual temperature at

this site is in between 22 – 40 �Cwith a mean of 37 �C
during March which is the flowering and grain-filling

stage of wheat at this location. The wheat cropping

cycle is short (December – March). The soil is a

calcareous Vertisol with pH 8.5 and is deficient in N

(300 mg L-1) and P (4 – 6 mg L-1) (Tadesse et al.

2019). The Dongula station is located at 19�10’ North
and 30�29’ East at 226 masl. Both Wad Medani and

Dongula stations are irrigated. Sids station in Egypt is

located at 29�3058.0600 North and 31�5057.7900 East at
322 masl. The soil is a highly fertile clay loamwith pH

7.8 and is a high-yielding site for wheat production.

The temperature ranges from 20 to 35 �C with an

average 30 �C during the cropping cycle (from

December to April). The Marchouch station in

Morocco, located at 33.6� N and 6.7� W at 410 masl,

is rainfed with annual average rainfall of 350 mm and

temperature range of 10 to 23 �C with an average of

16.6 �C. The soil is a Chromic Luvisol with a surface

pH of 6.

Genotypes were planted at both stations in Sudan

and in Egypt at the first week of December in both

years under irrigated conditions. Trials were irrigated

by flood irrigation applied at regular intervals, with

seven events at Dongula and Wad Medani and nine at

Sids. Planting at Marchouch was in mid-December

under rainfed conditions.

The experiment was conducted using an alpha-

lattice design with two replications and 20 incomplete

blocks each comprising 10 genotypes with a plot size

of 2.5 m length and six rows with 0.2 m spacing.
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Seeding rate was 100 kg/ha. Local management

practices were applied at each location (Tadesse

et al. 2019). The phenological observations of days

to heading (DH) and days to maturity (DM) were

recorded when 50% and 90% of plants in each plot

reached heading and maturity, respectively. The grain

filling period (GF) was recorded as days taken from

DH to DM. Above-ground biomass (BM), number of

grains per spike (GRSP), plant height (PH), and

peduncle length (PL) were determined in a 1 m2 area

from the central part of each plot at the time of

harvesting. Plant height (PH) was recorded as the

distance from the ground to the tip of the spike

excluding awns. Grain yield (GY) was recorded for

each plot and thousand-kernel weight (TKW) was

measured by weighing 1000 grains per plot.

Canopy temperature (�C) was evaluated using a

handheld infrared IR 1000 thermometer (Fluke 566

series, Everett, Washington, USA). The readings

included average leaf temperature of one linear meter

in each plot at the vegetative (CTD1) and at grain

filling (CTD2) stages. Leaf waxiness (WX) and leaf

rolling (L) were based on observations carried out at

optimal growth stages with appropriate scales accord-

ing to guidelines listed by Torres and Pietragalla

(2012).

Grain protein content (PR) was estimated by a near-

infrared transmittance spectrophotometer according to

the approved method of the American Association of

Cereal Chemists (AACC) (ICC, method No. 39–10,

Vienna, Austria). Grain gluten content (GL) was

measured with an automatic gluten measuring appa-

ratus (Glutomatic�) according to AACC approved

method 38–12.02. Dough rheological behavior was

measured by alveograph (Chopin S.A., Villeneuve la

Garenne, France) strength (W) using a white flour

sample (ICC standard method No. 122) and sedimen-

tation value (Z) was determined following the Zeleny

method (ICC standard 116/1 (ICC 2008)).

Data analysis

Amulti-environment trial analysis with the R (META-

R) v6.04 (Alvarado et al. 2020) software package was

used to conduct analysis of variance (ANOVA) and to

estimate best linear unbiased estimations (BLUEs) of

phenotypic traits including years, replications, blocks

and genotypes for all test sites. The repeatability of

traits for each environment was calculated according

to the following formula:

H ¼ r2G
r2Gþ r2E=nRep

Broad-sense heritability for the combined analysis

was calculated using the formula:

H2 ¼ r2G
r2Gþ r2GE=nlocþ r2E= nlocXnRepð Þ

where r2G and r2E are the genotype and error

variance components, respectively, nRep is the num-

ber of replicates, r2GE is the G 9 E interaction

variance component and nloc is the number of

environments. Frequency distributions of the pheno-

typic data were analyzed using Minitab 18 (Minitab

Ltd., Coventry, UK) and Pearson’s correlations

between phenotypic traits were computed using the

cor function in R environment (R Core Team 2020).

Genotyping

Leaf samples from 5 two-week-old seedlings from the

same seed source as used for field trials were pooled for

genomic DNA extraction. The pooled leaf tissue

samples were frozen in liquid nitrogen and stored

at - 80 �C before DNA extraction according to

Ogbonnaya et al. (2001). The extracted genomic

DNA was sent to TraitGenetics (Gatersleben) for

genotypingwith the 15 K SNPHDCustomGenotyping

BeadChip, which is an optimized and reduced version

of the 90 K wheat SNP assay described by Wang et al.

(2014b). SNP markers with\ 0.05 of minor allele

frequency (MAF) and[ 0.1 missing values per geno-

type were excluded. After quality assessment, 10,577

SNPs comprising 3,403 from the A-genome, 4,533

from the B-genome, 954 SNPs from the D-genome, and

1,582 SNPs with unassigned chromosomes were

included for GWAS study. Chromosome positions of

SNPs were assigned based on the consensus map of

wheat generated by Wang et al. (2014b).

Genome-wide association analysis

Genome-wide association analysis was performed

using six models encompassing single- and multi-
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locus analysis methods using the GAPIT v.3 software

package in R (Lipka et al. 2012). Population structure

and linkage disequilibrium of the panel were reported

in a previous study (Tadesse et al. 2019). The single-

locus methods including the general linear (GLM) and

mixed linear (MLM) models were implemented in

which the first included only population structure (Q)

modeled using principal component analysis accord-

ing to Price et al. (2006). MLM on the other hand

included both the kinship similarity matrix (K) and Q

as random and fixed effects, respectively, (Yu et al.

2006) making the model more stringent and able to

control false-positive MTAs. Settlement of MLM

under a progressively exclusive relationship (SUPER)

(Wang et al. 2014a) was the other single-locus analysis

method used in this study. Multi-locus based GWAS

models including MLMM (Segura et al. 2012),

FarmCPU (Liu et al. 2016) and BLINK (Huang et al.

2019) were applied forMTA analysis. Days to heading

was incorporated as a covariate in all models to avoid

confounding effects from this phenological factor.

Hence, GWAS was executed using the data set

generated from the BLUEs mean values of phenotypic

traits and 10,577 SNP markers with six GWAS

analysis models. Population structure and the kinship

similarity matrix were also incorporated according to

the model type. The exploratory threshold with

P B 0.001 (�log10PC3) was used to report significant

marker-trait associations.

Genomic prediction and cross validation

The ridge regression-best linear unbiased prediction

(RR-BLUP) mixed model was utilized to estimate the

GEBVs of 192 genotypes for the 16 studied traits

using the R package ‘‘rrBLUP’’ (Endelman 2011;

Endelman and Jannink 2012) with the formula:

y ¼ Xbþ Zl þ e

where X and Z were the design matrices and b and l
represented the vectors for fixed and random effects,

respectively; ywas a vector of phenotypic values and e
was the residual error. To evaluate the prediction

accuracy, cross-validation was estimated by allocating

genotypes randomly as training and testing sets with a

size of 80 and 20%, respectively, and repeated in 500

iterations. Predictive ability was estimated from the

correlation coefficient between the observed

phenotypic values and predicted values of the test

set. Prediction accuracy was then calculated from

prediction ability divided by the square root of

repeatability of the trait (Legarra et al. 2008; Chen

et al. 2011).

Results

Agronomic traits

The BLUEs for the 16 traits tested at four locations in

two consecutive years are given in Table S2 and the

phenotypic variation within the four locations and

combined years is summarized in Tables S3, S4 and

S5. The analysis of variance detected highly signifi-

cant variation among genotypes for all traits, except

CTD1, across locations and seasons. In the year

2015–16, grain yield ranged from 1.8 to 4.4, 0.7 to 4.1,

7 to 13 and 2.5 to 8.9 t/ha with mean values of 2.8, 2.3,

10 and 6 t/ha at Wad Medani, Dongula, Sids and

Marchouch, respectively. The corresponding values in

2016–17 were 1.6 to 4.3, 0.8 to 5.9, 4.5 to 13 and 2.2 to

5.9 t/ha with average values of 3, 3.5, 9.7 and 3.6. A

wide range of repeatability values was recorded for the

tested traits. For instance, there was high repeatability

for grain quality traits (Z (0.9), W (0.81), PR (0.81),

and GL (0.82)); yield and yield-related traits (DH

(0.91), DM (0.88), GY (0.8), PH (0.74), TKW (0.76),

and GFP (0.73)) and drought-related traits (WX (0.8),

and L (0.8)) for the trials at Wad Medani in 2016

(Table S4). Frequency distributions for all recorded

traits across the four locations and two years are given

in Fig. S1. Normal distributions were obtained for all

traits across environments and years, except for leaf

rolling (L) at Sids in both years where the distribution

was bimodal. The box plot distribution clearly shows

that the Sids location outperformed others in yield and

yield-related traits whereas Wad Medani was a better

performing for grain quality traits than Dongula and

Marchouch (Fig. S2).

Correlations among traits

Pearson’s correlations among agronomic, physiolog-

ical and quality traits tested across locations and years

are presented in Figs. S3A, S3B, S3C and S3D. Grain

yield was significantly correlated to BM, DH, PH, DH,
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GRSP, and WX but negatively correlated to GFP, PR,

GL, W, Z, CTD1 and CTD2 at Wad Medani

(Fig. S3A). A positive correlation was recorded

between grain quality traits (PR, GL, W and Z), but

these traits were negatively correlated to GRSP, BM,

GY and WX at Dongula (Fig. S3B). Days to heading

(DH) was negatively correlated to PR, GL and W at

Marchouch (Fig. S3C). Grain filling period (GFP)

showed a highly significant negative correlation with

DH but a positive correlation with TKW at Sids

(Fig. S3D).

Genome-wide association analysis

Significant MTAs were detected for the 16 traits. Six

different GWAS models comprising both single-locus

(GLM, MLM and SUPER) and multi-locus (MLMM,

FarmCPU and BLINK) methods were implemented to

detect reliable MTAs. All identified MTAs are listed

in Tables S6-S11 and the Manhattan and quantile–

quantile (Q-Q) plots are given in Figs. S6-S11. The

Q-Q plots show that models MLM, MLMM, Farm-

CPU and SUPER controlled false positives quite well

(Figs. S7-S10).

GWAS for yield and yield-related traits

Chromosome regions were identified with significant

MTAs for eight yield and yield-related traits using the

six GWAS models. Highly significant multi-model

MTAs were detected on the long arm of chromosome

5A for GY at the two heat stressed locations in Sudan.

SNP marker Ku_c19858_2078 on chromosome arm

5AL revealed highly significant MTAwith GY atWad

Medani in 2016 -17 across models (Table 1). Several

SNP markers within a 3 cM interval uncovered

significant multiple MTAs for this trait (Fig. 1). In

both years, all models detected significant multiple

MTAs on arm 5AL for GY tested at Wad Medani and

Dongula. SNP markers RAC875_c38693_319 and

RAC875_c34939_467 on chromosome arm 7BL

showed an environment-specific, highly significant

MTA with GY at the drought-prone Marchouch site.

Five models, except SUPER, identified marker

BS00057445_51 on the short arm of chromosome

3A as a significant MTA with GY at the high yielding

Sids location. Regions in chromosomes 1A, 2B, 6B,

and 7B showed highly significant environment-speci-

ficMTAs for GY across the six models (Figs. S6-S11).

SNP marker wsnp_Ex_c17303_25979191 on chro-

mosome arm 3BL revealed a significant multi-model

MTA for TKW at Sids (Table 1). Excal-

ibuR_c6255_1119 on chromosome arm 1AL identified

a significant MTA for TKW with all six models at

Dongula.Markers on other chromosomes, including 5B

(BS00024993_51), 6A (KukRi_Rep_c104648_106) and

6B (ExcalibuR_c99745_169) also revealed environ-

ment-specific significant MTAs for TKW across mod-

els. Various environments and model-specific MTAs

for TKW were also detected (Tables S6-S11). SNP

marker wsnp_RFL_Contig2403_1927045 on the long

arm of chromosome 1B displayed a significant MTA

with GRPS at Dongula. Environment-specific MTAs

were detected for GRPS on chromosomes 1A, 3A, 3D,

5A and 6A across the different test models. In addition

to GY, the SNP marker Ku_c19858_2078 on chromo-

some arm 5AL had a concurrent effect on DM, BM,

GFP and PH across environments.

Marker Ku_c19858_2078 that is very close to

BS00022071_51 had a highly significant association

for DM at Wad Medani in 2016 -17. This SNP also

showed significant MTA for the same trait at Dongula.

Multi-model significant MTAs were also detected for

DM on chromosomes 2A, 6A, 6D, 7A and 7D across

environments. SNPmarker TduRuM_contig14130_315

on chromosome arm 5BS showed a significant MTA

with GFP at Dongula. RAC875_c29314_291 on chro-

mosome arm 7DL and wsnp_Ex_c10084_16572374 on

arm 2AS were other SNP markers that exhibited robust

MTAs across the six models for GFP tested at

Marchouch. Various MTAs were identified for above-

ground biomass (BM) such as CAP8_c710_140,

BS00022071_51, RAC875_c17347_312, and KukRi_R-

ep_c70199_506 on chromosomes 4A, 5A, 6B and 7A,

respectively, across the six models.

Highly significant MTAs for PH across models and

environments were detected on the long arm of

chromosome 5B. The SUPER model, in particular,

identified 195 significant multiple MTAs for PH

within a 4 cM interval on chromosome arm 5BL

across the four environments (Table S10). Chromo-

somes 1A, 2D, 4A, 5A and 7B revealed significant

MTAs for PH across environments and models. The

BLINK model identified a highly significant MTA

with marker TA001068-0306-w on chromosome arm

3AL for PL with LOD of 13.0 at Wad Medani. SNP
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Table 1 Analysis results of chromosome regions with highly significant MTAs for grain yield and yield-related traits detected by

multi-model GWAS

Traita Chr Pos Location–yearb Models

GLM MLM MLMM BLINK SUPER FarmCPU

LOD LOD LOD LOD LOD LOD

GY Ku_c7740_879 2B 93 M–16 4.1 4.9 6.0 6.0 – 3.5

BS00057445_51 3A 47 S–16 3.4 3.5 3.9 4.0 – 4.0

Ku_c19858_2078 5A 89 WM–16 6.2 6.1 11.6 12.1 7.5 8.3

BS00090073_51 6B 39 M–15 – – – 6.3 4.5 8.5

RAC875_c38693_319 7B 167 M–16 – 3.6 3.3 10.0 6.0 7.5

RAC875_c34939_467 7B 159 M–15 3.6 – – 10.2 3.7 –

BM BS00022071_51 5A 91 D–16 8.6 7.2 9.2 16.0 8.4 14.7

wsnp_Ex_c29368_38408543 6A 77 D–15 5.7 4.8 4.1 – 4.4 4.6

TA016804–1075 7D 91 M–15 6.0 4.6 5.4 5.2 4.1 15.2

TG0019 Un Un D–16 8.0 7.0 – – 8.9 –

DM BS00022071_51 5A 91 D–16 8.6 7.2 9.2 16.0 8.4 14.7

wsnp_Ex_c29368_38408543 6A 77 D–15 5.7 4.8 4.1 – 4.4 4.6

TA016804–1075 7D 91 M–15 6.0 4.6 5.4 5.2 4.1 15.2

TG0019 Un Un D–16 8.0 7.0 – – 8.9 –

TKW ExcalibuR_c6255_1119 1A 70 D–15 6.4 4.0 4.1 7.4 3.2 8.6

wsnp_Ex_c17303_25979191 3B 77 S–15 7.5 3.7 4.4 7.3 6.9 4.2

BS00024993_51 5B 4 WM–16 4.6 3.9 4.1 3.7 3.8 6.4

KukRi_Rep_c104648_106 6A 55 S–15 5.8 4.0 4.6 – 4.4 –

ExcalibuR_c99745_169 6B 47 D–15 5.3 3.7 4.5 7.2 5.3 9.8

wsnp_JD_c18284_16822042 6B 58 WM–16 5.1 – – 9.6 6.5 4.2

GRSP Ku_c10813_1122 1A 82 D–15 4.3 3.4 3.5 3.4 – 3.4

wsnp_RFL_Contig2403_1927045 1B 137 D–16 4.1 4.1 4.8 4.8 4.1 4.8

RAC875_c75448_80 3A 98 S–15 3.9 3.7 3.4 3.4 3.5 3.4

ExcalibuR_c57482_473 3D 5 D–16 3.4 3.4 3.7 3.7 – 3.7

BS00023138_51 5A 142 D–16 3.5 3.5 3.9 4.0 3.7 4.0

GFP wsnp_Ex_c10084_16572374 2A 123 M–15 6.3 4.2 4.1 7.8 5.7 7.3

TduRuM_contig14130_315 5B 11 D–15 5.2 5.6 6.1 4.7 4.2 4.7

RAC875_c29314_291 7D 91 M–15 5.0 4.1 5.6 – 6.2 9.0

TG0019 Un Un WM–16 6.2 5.8 8.0 9.6 5.2 7.1

PH KukRi_c25839_487 1A 70 D–16 5.5 4.0 4.3 – 4.1 –

KukRi_c205_223 2D 77 D–15 4.3 – – 6.4 4.0 7.1

ExcalibuR_c13276_1322 4A 41 S–15 3.6 3.5 4.0 13.6 5.4 7.9

wsnp_Ku_Rep_c70220_69775367 5B 69 D–15 5.4 3.4 6.3 6.1 9.6 9.0

Ku_c15539_433 7B 157 M–16 3.8 4.4 4.5 3.5 – –

PL TA001068–0306–w 3A 89 WM–15 6.0 – – 13.0 7.2 7.9

wsnp_Ex_Rep_c66357_64540369 3A 124 S–16 5.1 3.8 3.7 3.4 4.3 3.4

RAC875_c28178_889 4A 37 WM–15 4.1 4.2 4.3 3.3 4.9 8.2

wsnp_JD_c9613_10432955 5B 71 D–16 5.1 3.1 3.1 10.1 5.6 6.7

RAC875_c54764_319 7A 35 WM–15 5.7 – – 10.0 6.0 6.5

a See Table 2 for trait and model abbreviations
b D, Dongula: WM, Wad Medan:, M,Marchouch; S, Sids; 15 and 16, 2015–2016 and 2016–2017, respectively

-, no significant MTA
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Fig. 1 Multi-model Manhattan plots for grain yield (GY) from the Wad Medani trial in 2016. See Table 2 and footnote to Table 1fig.

for abbreviations

123

  205 Page 8 of 22 Euphytica         (2021) 217:205 



markers iwsnp_Ex_Rep_c66357_64540369,

RAC875_c28178_889, wsnp_JD_c9613_10432955

and RAC875_c54764_319 on chromosomes 3A, 4A,

5B and 7A, respectively, exhibited significant MTAs

with PL cross environments and models.

GWAS for physiological traits

Significant MTAs were detected on chromosomes 5A,

6B, 7A, 2B, 3B and 4B for CTD1. SNP marker

KukRi_c10377_112 on chromosome arm 6BS had a

significant MTA with CTD1 at Wad Medani and four

models identified marker KukRi_c63163_141 on

chromosome arm 5AL associated with CTD1 at Sids.

TduRuM_contig12722_779 on chromosome arm 7AL

had MTA with CTD1 at Wad Medani across six

models (Table 3). CTD2 evaluated at Wad Medani

was significantly associated with SNP marker

BS00076246_51 on chromosome arm 5AL. The

SUPER model identified significant multi-MTAs on

the chromosome arm of 2BS (108 cM) atWadMedani

Table 2 Summary of acronyms and units of measurement

Acronyms Trait Unit of measurement

Yield related traits

GY Grain yield Tonnes/hectare (t/ha)

DH Days to heading Days

DM Days to maturity Days

GFP Grain filling period Days

TKW Thousand kernel weight Gram (g)

PH Plant height Centimeter (cm)

GRSP Number of grains per spike Number (n)

BM Above-ground biomass Gram (g)

PL Peduncle length Centimeter (cm)

Quality traits

PR Grain protein content Percent (% wt)

GL Gluten content Percent (% wt)

Z Zeleny sedimentation test Volume (ml)

W Alveograph strength J 9 104

Drought related traits

CTD1 Canopy temperature at vegetative stage �C
CTD2 Canopy temperature at grain filling stage �C
WX Leaf waxiness Scale, 1–5

L Leaf rolling Scale, 1–5

Others

GLM General linear model

MLM Mixed linear model

MLMM Multiple locus mixed linear model

BLINK Bayesian-information and linkage-disequilibrium iteratively nested keyway

SUPER Settlement of MLM under progressively exclusive relationship

FarmCPU Fixed and random model circulating probability unification

Chr Chromosome

Pos Position

MTA Marker-trait association

QTL Quantitative trait locus

LOD Logarithm of odds (-log10(P))
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in 2016–2017 (Table S10). All six models detected

environment-specific significant multi-MTAs for

CTD2 on chromosome arm 1BL; e.g.,

ExcalibuR_c23992_436.

All six models identified significant MTAs on

chromosomes 2B, 2D, 5B, 6B, and 7B forWX.Marker

RFL_Contig4849_702 on chromosome arm 2BL was

significantly associated with WX at Wad Medani

across the six models (Fig. 2), whereas Excal-

ibuR_Rep_c109101_94 on chromosome arm 2DS

was associated with WX at Sids across the six models.

Both environment and model-specific significant

MTAs for WX were identified (Tables S6-S11).

Leaf rolling is a well-established drought/heat-

related trait. Various significant MTAs were detected

for this trait across environments and within years

using the six GWAS models. Multi-model MTAs with

leaf rolling were identified on chromosomes 5A, 1B,

4B, 6A and 6B (Table 3). For instance, marker

Ku_c47168_563 on the long arm of chromosome 5AL

displayed a consistently significant MTA across all six

models.

GWAS for quality-related traits

Highly significant and stable MTAs were detected for

the four bread wheat quality traits. Significant multi-

MTAs were identified on homoeologous group 2 and 6

chromosomes for PR and GL (Tables S6-S11). For

instance, all models identified wsnp_Ex_c1988_

3742022 on chromosome arm 6DS with significant

MTA for PR at Wad Medani (Table 4). Markers

IAAV8501 and GENE-3709_393 on unassigned chro-

mosomes were consistently associated with PR atWad

Medani and Marchouch in 2016–2017, respectively.

Chromosomes 2D, 5A, 6A and 6D had stable associ-

ations with GL across models. Chromosomally unas-

signed marker IAAV8501 was associated with GL at

Marchouch.

Marker RAC875_c24504_119 on chromosome arm

3BL was significantly associated with alveograph

strength at Dongula (Fig. 3). Significant multi-MTAs

were detected for W on chromosomes 2A

(RAC875_c26214_505, KukRi_c3882_2021 and

CAP12_c259_307) and 2D (BS00093111_51,

BS00022532_51 and TA009010-0422) across all mod-

els at Marchouch (Tables S6-S11). Marker

BS00065960_51 on chromosome arm 6BS also

showed a significant MTA at the same location.

IAAV8501 with an unassigned chromosome position

also had a stable significant MTA with W across the

six GWAS models at Marchouch.

In addition to alveograph strength, the SNP Marker

RAC875_c24504_119 was associated with the Zeleny

sedimentation test at Dongula across all six models

(Table 4). RAC875_Rep_c118667_79 on chromosome

arm 2BS and CAP8_c3568_256 on chromosome arm

3AL were associated with Z evaluated in Dongula

across all models (Fig. 3). Several significant marker-

trait associations were detected for Z with the six

models across the four environments tested for two

years (Tables S6-S11).

Traits co-localized on chromosome regions

SNPmarkers with multiple trait effects were identified

in numerous chromosomes regions. Several SNP

markers within a 4 cM interval on chromosome arm

5AL exhibited MTAs with possibly pleiotropic effects

on yield and yield-related traits (Fig. 4). For example,

Ku_c19858_2078 on chromosome arm 5AL was one

such marker associated with multiple phenotypic

effects involving GY, PH, GFP, DM and BM detected

in all four environments with all six models (Fig. S4).

Except for BLINK and FarmCPU, four models

identified an environment-specific significant MTA

between Ku_c19858_2078 and CTD2 at WadMedani.

This marker also had an environment-specific signif-

icant MTA with quality-related traits, protein and

gluten content at Wad Medani. Except for FarmCPU,

the other models detected significant multiple MTAs

on chromosome arm 1AL for both TKW and PH

across environments and years. Chromosome arm

5BL had multiple SNPs with MTAs for PH and PL

across environments and years. The model SUPER

detected more than 140 highly significant MTAs on

chromosome 5BL (within 4 cM), mainly for both PH

and PL but also for GFP and L (Table S10). In both

years, chromosome arm 6AL showed significant

multi-MTAs for phenological traits (GFP and DM)

at Sids, Wad Medani and Dongula. BS00093111_51

on the short arm of chromosome 2D exhibited

concurrent effects with W, GL and PR across

environments. The MLM model detected significant

MTAs on 2AS with concurrent effects on quality traits

(PR, GL, W and Z) at the same three environments
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Fig. 2 Multi-model Manhattan plots for waxiness (WX) at Wad Medani in 2015. See Table 2 and footnote to Table 1 for abbreviations
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(Table S7). All models identified marker-trait associ-

ations on chromosome arm 5AS with concurrent

effects for various quality traits across environments.

Several chromosome regions with SNPs having con-

current effects on quality, drought, heat, yield and

yield-related traits were detected using the six models

across the four environments (Tables S6-S11).

Genomic prediction

Genomic breeding values of the 192 spring bread

wheat genotypes were determined for the 16 traits

using the RR-BLUP model. Prediction accuracy was

measured through the cross-validation method using

500 randomly generated datasets from 80 and 20%

training and prediction sets, respectively. A wide

range of prediction accuracies (PA) was found for

these traits at each location (Fig. S5A-S5D). The

highest PA for grain yield was 0.62 from the 2016—

2017 trial at Marchouch (Fig. 5C). High prediction

accuracies across locations were obtained for

peduncle length with 0.72, 0.69 and 0.64 from the

trials at Wad Medani, Dongula and Sids, respectively.

The prediction accuracy for Zeleny test was relatively

high in all trials with 0.63 at Wad Medani and

Marchouch and 0.61 at Dongula.

Discussion

Phenotypic variation in agronomic, physiologic

and quality traits

The aims of the present study were to investigate the

phenotypic variation in 16 agronomic, physiologic and

quality traits, locate the causative genes, and evaluate

the genomic prediction accuracy of these traits in a

panel of wheat lines grown in four very different

environments. Highly significant variation among

genotypes and the high heritability for most traits

confirmed the suitability of GWAS analysis. Grain

yield under drought/heat stress conditions is highly

variable and the genetic mechanism is quite different

Table 3 Highly significant MTAs for drought and heat-related traits detected by GWAS using six models

Traita Marker Chr Pos Location–year Model

GLM MLM MLMM BLINK SUPER FarmCPU

LOD LOD LOD LOD LOD LOD

CTD1 wsnp_CAP12_c1101_569783 4B 76 WM–15 3.2 3.2 3.3 – 3.4 –

KukRi_c63163_141 5A 63 S–15 – 3.5 3.6 – 3.8 3.6

KukRi_c10377_112 6B 33 WM–16 3.7 3.5 3.8 3.7 – 3.7

TduRuM_contig12722_779 7A 76 WM–15 3.2 3.4 3.6 3.1 3.3 3.1

CTD2 ExcalibuR_c23992_436 1B 75 WM–15 – 3.2 3.3 4.5 3.5 4.5

IAAV4876 3B 51 WM–16 4.7 – – 3.6 – 3.6

BS00076246_51 5A 89 WM–16 3.9 4.1 4.3 3.1 4.0 3.1

IACX5821 Un Un WM–15 – 3.7 3.7 4.7 3.8 4.7

WX RFL_Contig4849_702 2B 99 WM–15 6.2 3.8 4.0 6.9 4.4 5.5

ExcalibuR_Rep_c109101_94 2D 2 S–15 4.4 3.2 3.5 3.4 3.9 3.4

KukRi_Rep_c105540_177 5B 49 WM–16 4.9 3.7 4.0 3.3 4.3 3.3

KukRi_c4780_395 6B 83 D–15 4.6 4.0 5.2 4.6 3.5 4.6

Ku_c27319_1120 7B 71 S–15 4.2 3.5 3.7 3.3 4.5 3.3

L Ex_c4206_502 1B 108 WM–15 4.6 3.9 3.8 4.0 5.1 4.0

BS00057153_51 4B 76 S–16 5.6 3.2 3.0 3.4 3.6 3.4

Ku_c47168_563 5A 57 S–16 5.9 4.2 4.4 4.3 5.3 4.3

ExcalibuR_c24825_539 6A 122 S–15 – 4.2 4.5 3.2 4.1 3.2

ExcalibuR_c30648_924 6B 10 WM–16 3.4 3.9 4.1 – 3.8 –

a See Table 2 and footnotes to Table 1 for abbreviations
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Fig. 3 Multi-model Manhattan plots for alveograph strength (W) from Dongula in 2016. See Table 2 and footnote to Table 1 for

abbreviations
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from that under well-watered conditions (Pinto et al.

2010). Hence, adaptive morphological and physiolog-

ical traits are widely targeted as coping mechanisms to

give higher yield under these stress conditions

(Reynolds et al. 2007). Sids station in Egypt is a

well-known site with favorable conditions for wheat

Fig. 4 Co-localised QTL

detected on the long arm of

chromosome 5A for yield

and yield-related traits at

Wad Medani in 2016. See

Table 2 and footnote of

Table 1 for abbreviations
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production and varieties produced 3.6, 4.4 and 2.0

times more grain than at heat-stressed Wad Medani

and Dongula and drought-stressedMarchouch, respec-

tively, in 2015–2016. Grain yield was positively

correlated with DH, DM, BM, PH, GRPS and GFP,

in agreement with previous reports (Dodig et al. 2012;

Sukumaran et al. 2015) and with WX (Guo et al.

2016), but was negatively correlated with canopy

temperature at flowering across environments (Saint

Pierre et al. 2010). Furthermore, grain yield was

negatively correlated with grain quality parameters

across environments, a well-known relationship (Kaya

and Akcura 2014; Thorwarth et al. 2018).

GWAS analysis

The six implemented GWAS models frequently

identified significant MTAs in similar chromosome

regions for a particular trait. However, some models or

only a single model also detected QTLs for different

traits. For instance, all six models detected a major

QTL for grain yield on chromosome arm 5AL at the

heat stressed sites, whereas only the three single-locus

models identified a QTL for grain gluten content on

chromosome arm 2DS and the SUPER model detected

highly significant multi-MTAs (195 MTAs within

4 cM) on chromosome arm 5BL for plant height. This

result clearly illustrates one of the advantages of multi-

model GWAS analysis for thorough QTL analysis.

Most identified MTAs were environment-specific,

signifying the presence of QTL x E interaction.

However, several across-environment MTAs were

detected at the Wad Medani and Dongula sites due to

similar environmental conditions. These results pro-

vide the basis for further marker-assisted selection

research to enhance yield, yield stability and end-use

quality of spring wheat in heat stressed environments.

Table 4 Summary of GWAS for chromosome regions with highly significant MTAs for grain quality traits detected by GWAS using

six models

Trait Marker Chr Pos Location–year Model

GLM MLM MLMM BLINK SUPER FarmCPU

LOD LOD LOD LOD LOD LOD

GL BS00093111_51 2D 7 M–16 4.9 5.7 – – 4.6 –

BS00064515_51 5A 27 D–16 3.9 4.5 3.9 3.5 3.4 3.5

IAAV622 6A 82 WM–16 4.2 3.7 – 3.1 4.4 3.1

wsnp_Ex_c1988_3742022 6D 25 WM–16 5.2 4.4 4.0 4.6 4.6 4.6

IAAV8501 Un Un M–16 5.5 6.0 5.6 7.6 5.0 8.8

PR BS00093111_51 2D 7 M–16 4.4 5.3 – 4.0 – 4.0

wsnp_Ex_c1988_3742022 6D 25 WM–16 5.1 4.4 4.8 4.5 4.2 4.5

IAAV8501 Un Un M–16 4.8 5.5 4.9 4.3 – 4.3

GENE–3709_393 Un Un WM–16 4.5 4.2 4.5 3.9 3.5 3.9

BS00062996_51 5A 27 D–16 4.1 3.7 3.3 3.4 3.2 3.4

W RAC875_c26214_505 2A 47 M–16 3.7 6.2 – 3.1 4.6 3.1

RAC875_c24504_119 3B 100 D–16 5.1 5.5 6.0 8.6 5.0 7.9

BS00065960_51 6B 1 M–16 5.3 4.2 3.5 4.6 – 4.6

wsnp_Ra_c13881_21836489 6D 90 D–16 4.7 – 3.3 3.1 4.4 4.6

IAAV8501 Un Un M–16 5.1 6.0 6.0 4.4 4.9 4.4

Z ExcalibuR_c25599_358 2A 26 M–16 – 4.9 3.8 – 3.1 4.7

RAC875_Rep_c118667_79 2B 109 D–16 3.7 – 3.3 – 3.5 4.7

CAP8_c3568_256 3A 158 D–16 3.5 3.2 – 5.0 – 4.9

RAC875_c24504_119 3B 100 D–16 6.2 6.7 7.5 10.5 6.0 12.1

BobWhite_c6966_236 5A 131 WM–15 6.4 – – 6.3 3.5 3.5

See Table 2 and footnotes to Table 1 for abbreviations
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GWAS and GP for yield-related traits

Multi-model highly significant MTAs were detected

on chromosome arm 5AL for grain yield and yield-

related traits in the heat stressed environments, in

agreement with previous studies (Reif et al. 2011b;

Sukumaran et al. 2015; Tadesse et al. 2019; Li et al.

2019). These MTAs were located close to the vernal-

ization locus Vrn-A1 (Yan et al. 2004). However,

analysis using days-to-heading as a covariate has

indicated that these markers are independent of

flowering dates of the varieties (Tadesse et al. 2019).

This chromosome region could be targeted molecu-

larly for wheat yield enhancement in heat stress

environments. Qaseem et al. (2019) and Jamil et al.

(2019) identified a significant MTA for GY on

chromosome 7B which was close to SNP markers

RAC875_c38693_319 and RAC875_c34939_467

detected on this study with multi-model significant

MTAs for GY at Marchouch. These markers could be

targeted for yield improvement under drought stress

environments through marker-assisted selection. SNP

markers BS00057445_51 and Ku_c7740_879 on chro-

mosome arms 3AS and 2BL identified with multi-

models at Sids and Marchouch, respectively, could

represent new QTL for GY.

RAC875_Rep_c69356_504 on chromosome arm

7AL with a multi-model significant MTA for BM at

Dongula is close to SNP marker

wsnp_Ex_c39221_46569987 reported by Tadesse

et al. (2019) for the same trait. A multi-model

significant MTA for DM on chromosome 5A

(BS00022071_51, 91 cM) was near to SNP_7068

reported by Gahlaut et al. (2019) and another on

chromosome 6A (wsnp_Ex_c29368_38408543,

77 cM) close to BobWhite_c30930_192 (71 cM) dis-

covered by Sukumaran et al. (2015). Regions in

chromosomes 5B, 7D and 2A were revealed as multi-

model significant MTAs for GFP across the heat and

drought environments and some of the regions were

detected and validated previously (Paliwal et al. 2012;

Tiwari et al. 2013). TG0019 in an unassigned

chromosome that revealed a MTA in all six GWAS

models atWadMedani couldmark a newly discovered

QTL for GFP in heat stressed environments.

Multi-model significant MTAs consistent with

previous reports were detected for TKW in chromo-

somes 3B (Tadesse et al. 2019; Shokat et al. 2020), 5B

(Ma et al. 2018), 6A (Sun et al. 2017; Gahlaut et al.

2019) and 6B (Sun et al. 2017; Jamil et al. 2019). SNP

marker ExcalibuR_c6255_1119 on chromosome 1AL

that exhibited a multi-model highly significant MTA

for TKW at Dongula could mark a new QTL for this

yield-attributing trait.

Maintaining higher GRPS in drought and/or heat

stress environments is an important breeding target.

This trait positively correlates with grain yield under

stress conditions (Shokat et al. 2020). The multi-

model MTA for GRPS on the long arm of chromo-

some 3A detected at Sids was reported previously (Li

et al. 2019; Shokat et al. 2020). The GLM, MLM and

MLMM models detected significant multi-MTAs for

GRPS on chromosome arm 2BL as reported in

previous studies (Liu et al. 2018; Tadesse et al.

2019). Li et al. (2019) identified an environmentally

stable MTA for kernels per spike on chromosome

1AL, close to SNPmarker Ku_c10813_1122, revealed

a multi-model MTA for GRPS at Dongula.

The multi-model significant MTA for PH on

chromosome arm 1AL was previously reported by

Sukumaran et al. (2015). KukRi_c205_223 at 77 cM

on chromosome arm 2DS, according to the wheat

consensus map (Wang et al. 2014b), exhibited a multi-

model significant MTA for PH at Dongula. Likewise,

RAC875_c48703_148 at 9.2 cM on the same chromo-

some was reported by Sun et al. (2017). This QTL

could be linked to the Rht8 gene (Korzun et al. 1998).

Ma et al. (2018) also detected a PH QTL with

pleiotropic effects on other yield-related traits in the

same chromosome. GWAS model SUPER detected

significant multi-MTAs for PH on chromosome arm

5BL, including marker wsnp_Ku_R-

ep_c70220_69775367 (69 cM) that unveiled a signif-

icant MTA across all six GWAS models. Wang et al.

(2017) detected Excalibur_c1925_2569 (132 cM)

with significant MTA for PH on the same chromo-

some. Ku_c15539_433 (157 cM) on chromosome arm

7BL had a multi-model significant MTA for PH at

Marchouch. This marker was quite distant from

markers wsnp_Ex_rep_c68762_67626384 and Excal-

ibur_c50612_409 (28 cM) detected by Wang et al.

(2017) with a multi-environment significant MTA.

SNP markers AX-111600193 (Li et al. 2020) and

Kukri_c77040_87 (Ain et al. 2015) on chromosome

arm 4AS with effects on PH were 50 cM from

ExcalibuR_c13276_1322 with a significant MTA for

PH at Sids. Considering the distance between the

markers, ExcalibuR_c13276_1322 could mark a novel
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QTL with a profound effect on yield under favorable

conditions.

Peduncle plays a considerable role in wheat

productivity, such as facilitating transporting assimi-

lates to the filling grain, lessening the risk of leaf-

borne pathogen infections, and maintaining signifi-

cantly higher water potential under drought stress or

high temperature conditions (Kong et al. 2010). Multi-

model significant MTAs were detected for PL on

chromosome arms 3AL (two), 4AS, 5BL and 7AL and

some of them were reported previously. For example,

SNP marker BS00039498_51 detected by Sukumaran

et al. (2015) at 122 cM was adjacent to the currently

detected marker wsnp_Ex_Rep_c66357_64540369

(124 cM) on chromosome arm 3AL with significant

MTA for PL at Sids. Since they were not reported in

any previous study, the multi-model significant MTAs

detected on chromosome arms 4AS, 5BL and 7AL

might be new.

This study estimated the genomic breeding values

of genotypes for yield and yield-related traits and a

wide range of genomic prediction accuracies was

determined. The prediction accuracies for yield and

yield-related traits were generally promising, ranging

from 0.21 for GY at Sids to 0.72 for PL at Wad

Medani. Lozada et al. (2019) reported a genomic

prediction accuracy of up to 0.56 for yield and yield-

related traits in winter wheat. Juliana et al. (2020)

reported genomic prediction accuracies in the range

0.34 – 0.59 for grain yield in the CIMMYT wheat

breeding program after analysing a large number of

trials conducted over several years and locations.

GWAS and GP for physiological traits

Multi-model significant MTAs for canopy tempera-

ture were discovered on multiple chromosomes.

Except BLINK and FarmCPU, four models detected

wsnp_CAP12_c1101_569783 with a significant MTA

with CTD1 on chromosome arm 4BS. Tahmasebi et al.

(2017) also found two QTLs on chromosome 4B with

high phenotypic effects for canopy temperature at the

vegetative stage. However, due to the difference in

fingerprinting platforms, we could not determine

whether those QTL overlapped with the currently

detected QTL. Our QTL was possibly the semi-dwarf

gene Rht-B1 (Pearce et al. 2011) as Rebetzke et al.

(2013) reported that the reduced height was associated

with higher canopy temperature. Pinto et al. (2010)

detected environmentally stable QTL on chromosome

7A in agreement with the present marker TduRuM_-

contig12722_779 associated with CTD1 at Wad

Medani. In agreement with this study, Pinto et al.

(2010) detected QTL for CTD2 on chromosomes 1B,

3B and 5A. These could be targets for marker-assisted

selection aimed at wheat improvement in drought/heat

stress environments. SNP markers

wsnp_CAP12_c1101_569783 on chromosome arm

4BL and IACX5821 (unassigned chromosome loca-

tion) exhibited multi-model significant MTAs for

CTD1 and CTD2, respectively, could represent new

QTL for these traits.

Waxiness or glaucousness is a polygenic trait

involved in multiple biosynthetic pathways and its

expression is affected by environment (Broun et al.

2004). RFL_Contig4849_702 on the chromosome arm

2BS exhibited an environment-specific MTA across

the six models at Wad Medani (Fig. 2B). The six

models also detected ExcalibuR_Rep_c109101_94 on

chromosome arm 2DS having a significant association

with waxiness at Sids. Two wax inhibitors and two

wax production genes underlining variation in glau-

cousness; Iw1 on chromosome arm 2BS (Wu et al.

2013; Adamski et al. 2013), Iw2 on chromosome arm

2DS (Nelson et al. 1995; Wu et al. 2013), W1 on

chromosome arm 2BS (Lu et al. 2015), and W2 on

chromosome arm 2DS (Tsunewaki and Ebana 1999),

respectively, were identified previously. An additional

gene loci, W3 was also detected previously on the

chromosome arm 2BS and its mutation led to a

reduction of 99% in b-diketones accounting for 63.3%
of the total wax load of the wild-type (Zhang et al.

2015). Genomic regions in chromosome arms 5BL,

6BL and 7BL possibly represent new QTL for

waxiness.

Leaf rolling was identified as a physiological

indicator of drought- and heat-avoidance (O’Toole

et al. 1979). The genetic bases of leaf rolling in

drought/heat stress environments has not been exten-

sively studied in wheat, but limited studies have

identified QTLs with variable effects (Peleg et al.

2009; Tahmasebi et al. 2017). We detected multi-

model MTAs for leaf rolling on chromosomes 1B, 4B,

5A, 6A and 6B and some of these could have a role in

marker-assisted selection, fine mapping and/or gene

cloning aimed at utilizing this trait to improve wheat
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production in environments exposed to heat and

drought stress.

The genomic prediction accuracies of genomic

breeding values of genotypes for the four physiolog-

ical traits were highly variable, ranging from 0.16 for

leaf rolling to 0.57 for canopy temperature at grain

filling at Wad Medani. A higher average PA (0.75)

obtained by Würschum et al. (2020) for epicuticular

waxiness in winter wheat was much higher than the

current study (0.47), but the number of worldwide

winter wheat genotypes used in the former was

fivefold more than the present study.

Marker-trait associations and GP for quality-

related traits

Chromosome regions revealing multi-model signifi-

cant MTAs for quality traits PR, GL, W and Z were

detected in this study. Both PR and GL exhibited

environment-specific QTL indicating significant

effects of genotype x environment (G x E) interaction.

Homoeologous group 6 chromosomes were involved

in multi-model significant MTAs for all quality traits.

These MTAs were likely related to storage proteins

gliadins and low molecular weight (LMW) glutenins

(Payne et al. 1987; Nelson et al. 2006). The multi-

model significant MTAs for PR, GL and W detected

on the short arms of homoeologous group 6 chromo-

somes (Table 4) were likely determined by variation at

the Gli-2 gliadin loci (Payne 1987). Homoeologous

group 2 chromosomes also contributed multi-model

significant MTAs for all quality traits; these were

likely associated with the photoperiod-sensitivity

Ppd1 genes (Scarth and Law 1984; Royo et al.

2016). The alleles coding for insensitivity to short

day length enhance grain yield in low latitude and

short-season conditions by allowing earlier heading.

This leads to earlier grain filling before more extreme

heat and/or drought stress periods that come with the

onset of summer (Worland et al. 1988; Nelson et al.

2006). Although a thorough analysis of the relation-

ship between Ppd1 genes and quality parameters of

wheat has not been documented, Nelson et al. (2006)

reported a strong correlation between early heading

and protein concentration among 114 recombinant

inbreed lines generated from a synthetic-hexaploid

(W7985) 9 Opata 85 cross. Marker

RAC875_c24504_119 on chromosome arm 3BL was

another source of multi-model highly significant

MTAs with concurrent effects on alveograph strength

and Zeleny sedimentation across three environments.

Carter et al. (2012) extensively studied chromosome

3B as a source of genes affecting several milling and

baking quality traits in soft white spring wheat but did

not report this particular QTL. Genomic PA for quality

traits was in a range of 0.38—0.63 recorded for PR at

Wad Medani and Zeleny at the Wad Medani and

Marchouch sites, respectively. Lado et al. (2018)

reported PA for these baking quality traits in a similar

range to the current study.

Conclusions

A comprehensive GWAS and GP analysis was con-

ducted for 16 agronomic, physiologic and quality

related traits using 192 spring bread wheat genotypes

grown in four environments for two years. Several

multi-model significant MTAs were detected. Most

MTAs were environmentally specific indicating the

presence of high QTL x E interaction. Chromosome

arm 5AL proved to be the source of QTL for yield and

yield-related traits at the heat stress sites. The long arm

of chromosome 3B was with multi-model significant

MTA for TKW detected at Sids. A stable MTA for PH

was detected on chromosome arm 5BL across envi-

ronments and models. Chromosome arm 4BS had a

QTL for CDT1 and all models detected significant

MTAs for WX on chromosome arm 2DS. This last

chromosome region and homoeologous regions were

previously associated with both wax production and

wax inhibition. QTL for quality traits were associated

with loci controlling storage proteins gliadins and

LMW glutenins. All six GWAS models identified

highly significant MTAs for Zeleny sedimentation and

alveograph strength on chromosome arm 3BL. The

identified QTL can be targeted for marker-assisted

selection for developing superior haplotypes with

positive effects for targeted traits or for further studies

on fine mapping and cloning of the underlying causal

genes. Genomic prediction was applied to various

traits to estimate the genomic breeding values of

individual genotypes in specific environments. The

genomic prediction accuracies were generally encour-

aging for most traits, indicating that implementing the

wheat-breeding program at ICARDA could be

worthwhile.

123

  205 Page 18 of 22 Euphytica         (2021) 217:205 



Acknowledgements The Grains Research and Development

Corporation (GRDC) of Australia is acknowledged for

supporting this research.

Author contributions WT, SS, ST, AH, A-A, AAA conceived

and designed the study. ST, WT, AH, SS collected the

phenotypic data. AA conducted data analysis and prepared the

manuscript. WT, SS, AAA, A-A reviewed and edited the

manuscript. All authors approved the final version of this

manuscript.

Funding Open access funding provided by Swedish

University of Agricultural Sciences. Grains Research

Development Corporation (GRDC), Australia (grant number-

ICA00013), supported this study.

Declarations

Conflicts of interest The authors declare that no competing

financial interests or personal relationships influenced the work

reported in this paper.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any med-

ium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

References

Adamski NM, Bush MS, Simmonds J et al (2013) The inhibitor

of wax 1 locus (Iw1) prevents formation of b- And OH-b-
diketones in wheat cuticular waxes and maps to a sub-cM

interval on chromosome arm 2BS. Plant J 74:989–1002.

https://doi.org/10.1111/tpj.12185

Ain Q, Rasheed A, Anwar A et al (2015) Genome-wide asso-

ciation for grain yield under rainfed conditions in historical

wheat cultivars from Pakistan. Front Plant Sci 6:743.

https://doi.org/10.3389/fpls.2015.00743

Alvarado G, Rodrı́guez FM, Pacheco A et al (2020)META-R: A

software to analyze data from multi-environment plant

breeding trials. Crop J 8:745–756. https://doi.org/10.1016/

j.cj.2020.03.010

Battenfield SD, Sheridan JL, Silva LDCE et al (2018) Breeding-

assisted genomics: applying meta-GWAS for milling and

baking quality in CIMMYT wheat breeding program.

PLoS ONE 13:e0204757. https://doi.org/10.1371/journal.

pone.0204757

Brachi B, Morris GP, Borevitz JO (2011) Genome-wide asso-

ciation studies in plants: the missing heritability is in the

field. Genome Biol 12:232. https://doi.org/10.1186/gb-

2011-12-10-232

Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a

tool to identify plant response to global climate change.

climate change and crop production. CABI, Wallingford,

UK, pp 115–138

Broun P, Poindexter P, Osborne E et al (2004) WIN1, a tran-

scriptional activator of epidermal wax accumulation in

Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711.

https://doi.org/10.1073/pnas.0305574101

Carter AH, Garland-Campbell K, Morris CF, Kidwell KK

(2012) Chromosomes 3B and 4D are associated with sev-

eral milling and baking quality traits in a soft white spring

wheat (Triticum aestivum L.) population. Theor Appl

Genet 124:1079–1096. https://doi.org/10.1007/s00122-

011-1770-x

Chen CY, Misztal I, Aguilar I et al (2011) Genome-wide mar-

ker-assisted selection combining all pedigree phenotypic

information with genotypic data in one step: An example

using broiler chickens. J Anim Sci 89:23–28. https://doi.

org/10.2527/jas.2010-3071

Chen X, Min D, Yasir TA, Hu Y-G (2012) Evaluation of 14

morphological, yield-related and physiological traits as

indicators of drought tolerance in Chinese winter bread

wheat revealed by analysis of the membership function

value of drought tolerance (MFVD). Field Crop Res

137:195–201. https://doi.org/10.1016/j.fcr.2012.09.008

Cossani CM, Reynolds MP (2012) Physiological traits for

improving heat tolerance in wheat. Plant Physiol

160:1710–1718. https://doi.org/10.1104/pp.112.207753
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