biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 58:681-688, 2014 | DOI: 10.1007/s10535-014-0436-3

The genetic basis of durum wheat germination and seedling growth under osmotic stress

M. Nagel1,*, S. Navakode1, V. Scheibal1, M. Baum2, M. Nachit2, M. S. Röder1, A. Börner1
1 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Stadt Seeland, Germany
2 International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria

Durum wheat (Triticum turgidum L. var. durum) is mainly produced under rainfed but often sub-optimal moisture conditions in the Mediterranean basin. A set of 114 durum wheat recombinant inbred lines (RILs) developed from the cross of cultivars Omrabi5 × Belikh2 were tested for the ability to tolerate moisture deficiency at the germination and early seedling growth stage. The stress was imposed by exposing the germinating grain to 12 % polyethylene glycol. It induced a measurable reduction in root length, shoot length, and the percentage of normal seedlings. The germination and seedling growth of Belikh2 were more strongly inhibited than those of Omrabi5, and both parents were outperformed by > 50 % of the RILs. A quantitative trait locus (QTL) analysis was carried out by first assembling a linkage map from 265 informative microsatellites. Composite interval mapping revealed nine QTL spread over seven chromosomes. Five of these were associated with coleoptile length, and one of the five explained nearly 29 % of the relevant phenotypic variance. The coleoptile length was significantly correlated with the seedling growth, plant height, and thousand kernel mass derived from field-grown plants of the same RIL population.

Keywords: drought stress; polyethylene glycol; QTL; recombinant inbred lines; seed size; seed vigour; Triticum durum
Subjects: germination; osmotic stress; drought; polyethylene glycol; QTL; recombinant inbred lines; growth; linkage mapping; wheat

Received: April 2, 2013; Revised: April 29, 2014; Accepted: April 30, 2014; Published: December 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nagel, M., Navakode, S., Scheibal, V., Baum, M., Nachit, M., Röder, M.S., & Börner, A. (2014). The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biologia plantarum58(4), 681-688. doi: 10.1007/s10535-014-0436-3
Download citation

Supplementary files

Download filebpl-201404-0010_S1.pdf

File size: 48.68 kB

References

  1. Akinci, C., Yildirim, M., Bahar, B.: The effects of seed size on emergence and yield of durum wheat. - J. Food Agr. Environ. 6: 234-237, 2008.
  2. Almansouri, M., Kinet, J.M., Lutts, S.: Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). - Plant Soil 231: 243-254, 2001. Go to original source...
  3. Blanco, A., Lotti, C., Simeone, R., Signorile, A., De Santis, V., Pasqualone, A., Troccoli, A., Di Fonzo, N.: Detection of quantitative trait loci for grain yield and yield components across environments in durum wheat. - Cereal Res. Commun. 29: 237-244, 2001. Go to original source...
  4. Blum, A.: Osmotic adjustment and growth of barley genotypes under drought stress. - Crop Sci. 29: 230-233, 1989. Go to original source...
  5. Blum, A.: Crop responses to drought and the interpretation of adaptation. - Plant Growth Regul. 20: 135-148, 1996. Go to original source...
  6. Börner, A., Röder, M., Korzun, V.: Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). - Theor. appl. Genet. 95: 1133-1137, 1997. Go to original source...
  7. Bouaziz, A., Hicks, D.R.: Consumption of wheat seed reserves during germination and early growth as affected by soilwater potential. - Plant Soil 128: 161-165, 1990. Go to original source...
  8. Chazen, O., Hartung, W., Neumann, P.M.: The different effects of PEG-6000 and NaCl on leaf development are associated with differential inhibition of root water transport. - Plant Cell Environ. 18: 727-735, 1995. Go to original source...
  9. Chen, G.X., Krugman, T., Fahima, T., Chen, K.G., Hu, Y.G., Roder, M., Nevo, E., Korol, A.: Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. - Genet. Resour. Crop Evol. 57: 85-99, 2010. Go to original source...
  10. Collins, N.C., Tardieu, F., Tuberosa, R.: Quantitative trait loci and crop performance under abiotic stress: where do we stand? - Plant Physiol. 147: 469-486, 2008. Go to original source...
  11. Connell, P., Lawrance, L., Nelson, R.: Durum wheat - Australia's role in world markets. - Aust. Commodities 11: 319-324, 2004.
  12. Czyczylo-Mysza, I., Marcinska, I., Skrzypek, E., Chrupek, M., Grzesiak, S., Hura, T., Stojalowski, S., Myskow, B., Milczarski, P., Quarrie, S.: Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. - Plant Genet. Resour. Charact. Utilization 9: 291-295, 2011. Go to original source...
  13. Ganal, M.W., Röder, M.: Microsatellite and SNP markers in wheat breeding. - In: Varshney, R.K., Tuberosa, R. (ed.): Genomics Assisted Crop Improvement. Vol. 2. Pp. 1-24. Springer, Dordrecht 2007. Go to original source...
  14. Golabadi, M., Arzani, A., Maibody, S.A.M.M., Tabatabaei, B.E.S., Mohammadi, S.A.: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. - Euphytica 177: 207-221, 2011. Go to original source...
  15. González, Á., Ayerbe, L.: Response of coleoptiles to water deficit: growth, turgor maintenance and osmotic adjustment in barley plants (Hordeum vulgare L.). - Agr. Sci. 2: 159-166, 2011. Go to original source...
  16. Habash, D.Z., Kehel, Z., Nachit, M.: Genomic approaches for designing durum wheat ready for climate change with a focus on drought. - J. exp. Bot. 60: 2805-2815, 2009. Go to original source...
  17. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R., Panneerselvam, R.: Drought stress in plants: a review on morphological characteristics and pigments composition. - Int. J. Agr. Biol. 11: 100-105, 2009.
  18. Kato, Y., Hirotsu, S., Nemoto, K., Yamagishi, J.: Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture. - Euphytica 160: 423-430, 2008. Go to original source...
  19. Kaydan, D., Yagmur, M.: Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. - Afr. J. Biotechnol. 7: 2862-2868, 2008.
  20. Khurana, E., Singh, J.S.: Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. - Environ. Conserv. 28: 39-52, 2001. Go to original source...
  21. Kosambi, D.D.: The estimation of map distance from recombination values. - Ann. Eugenics 12: 172-175, 1944. Go to original source...
  22. Kulkarni, M., Deshpande, U.: In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. - Afr. J. Biotechnol. 6: 691-696, 2007.
  23. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. - Genomics 1: 174-181, 1987. Go to original source...
  24. Landjeva, S., Neumann, K., Lohwasser, U., Börner, A.: Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. - Biol. Plant. 52: 259-266, 2008. Go to original source...
  25. Leishman, M.R., Westoby, M.: The role of seed size in seedling establishment in dry soil conditions - experimental evidence from semiarid species. - J. Ecol. 82: 249-258, 1994. Go to original source...
  26. Liu, X., Li, R., Chang, X., Jing, R.: Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. - Euphytica 189: 51-66, 2013. Go to original source...
  27. Maccaferri, M., Sanguineti, M.C., Corneti, S., Ortega, J.L.A., Ben Salem, M., Bort, J., DeAmbrogio, E., Del Moral, L.F.G., Demontis, A., El-Ahmed, A., Maalouf, F., Machlab, H., Martos, V., Moragues, M., Motawaj, J., Nachit, M., Nserallah, N., Ouabbou, H., Royo, C., Slama, A., Tuberosa, R.: Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. - Genetics 178: 489-511, 2008. Go to original source...
  28. Maccaferri, M., Sanguineti, M.C., Demontis, A., El-Ahmed, A., Del Moral, L.G., Maalouf, F., Nachit, M., Nserallah, N., Ouabbou, H., Rhouma, S., Royo, C., Villegas, D., Tuberosa, R.: Association mapping in durum wheat grown across a broad range of water regimes. - J. exp. Bot. 62: 409-438, 2011. Go to original source...
  29. McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? - New Phytol. 178: 719-739, 2008. Go to original source...
  30. Mian, M.A.R., Nafziger, E.D.: Seed size and water potential effects on germination and seedling growth of winter-wheat. - Crop Sci. 34: 169-171, 1994. Go to original source...
  31. Michel, B.E., Kaufmann, M.R.: Osmotic potential of polyethylene-glycol 6000. - Plant Physiol. 51: 914-916, 1973. Go to original source...
  32. Mut, Z., Akay, H., Aydin, N.: Effects of seed size and drought stress on germination and seedling growth of some oat genotypes (Avena sativa L.) - Afr. J. agr. Res. 5: 1101-1107, 2010.
  33. Nachit, M., Elouafi, I.: Durum wheat adaptation in the Mediterranean dryland: breeding, stress physiology, and molecular markers. - Crop Sci. 32: 203-218, 2004. Go to original source...
  34. Nagel, M., Vogel, H., Landjeva, S., Buck-Sorlin, G., Lohwasser, U., Scholz, U., Börner, A.: Seed conservation in ex-situ genebanks - genetic studies on longevity in barley. - Euphytica 170: 1-10, 2009. Go to original source...
  35. Palta, J.A., Chen, X., Milroy, S.P., Rebetzke, G.J., Dreccer, M.F., Watt, M.: Large root systems: are they useful in adapting wheat to dry environments? - Funct. Plant Biol. 38: 347-354, 2011. Go to original source...
  36. Passioura, J.B.: Roots and drought resistance. - Agr. Water Manage. 7: 265-280, 1983. Go to original source...
  37. Rebetzke, G.J., Ellis, M.H., Bonnett, D.G., Richards, R.A.: Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). - Theor. appl. Genet. 114: 1173-1183, 2007. Go to original source...
  38. Rebetzke, G.J., Richards, R.A., Fischer, V.M., Mickelson, B.J.: Breeding long coleoptile, reduced height wheats. - Euphytica 106: 159-168, 1999. Go to original source...
  39. Reza, T., Fayaz, F., Naji, A.M.: Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). - Gen. appl. Plant Physiol. 35: 64-74, 2009.
  40. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W.: A microsatellite map of wheat. - Genetics 149: 2007-2023, 1998. Go to original source...
  41. Rosyara, U.R., Ghimire, A.A., Subedi, S., Sharma, R.C.: Variation in south Asian wheat germplasm for seedling drought tolerance traits. - Plant genet. Resources Charact. Utilization 7: 88-93, 2009. Go to original source...
  42. Sade, B., Soylu, S., Yetim, E.: Drought and oxidative stress. - Afr. J. Biotechnol. 10: 11102-11109, 2011. Go to original source...
  43. Schutte, B.J., Regnier, E.E., Harrison, S.K.: The association between seed size and seed longevity among maternal families in Ambrosia trifida L. populations. - Seed Sci. Res. 18: 201-211, 2008. Go to original source...
  44. Schwienbacher, E., Marcante, S., Erschbamer, B.: Alpine species seed longevity in the soil in relation to seed size and shape - A 5-year burial experiment in the Central Alps. - Flora 205: 19-25, 2010. Go to original source...
  45. Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., Cregan, P.B.: Development and mapping of microsatellite (SSR) markers in wheat. - Theor. appl. Genet. 110: 550-560, 2005. Go to original source...
  46. Spielmeyer, W., Hyles, J., Joaquim, P., Azanza, F., Bonnett, D., Ellis, M.E., Moore, C., Richards, R.A.: A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. - Theor. appl. Genet. 115: 59-66, 2007. Go to original source...
  47. Tuberosa, R., Salvi, S.: Genomics-based approaches to improve drought tolerance of crops. - Trends Plant Sci. 11: 405-412, 2006. Go to original source...
  48. Utz, H.F.: PlabStat (version 3A). A computer program for statistical analysis of plant breeding experiments. - In: Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 2011.
  49. Vadez, V., Kholova, J., Zaman-Allah, M., Belko, N.: Water: the most important' molecular' component of water stress tolerance research. - Funct. Plant Biol. 40: 1310-1322, 2013. Go to original source...
  50. Verslues, P.E., Ober, E.S., Sharp, R.E.: Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. - Plant Physiol. 116: 1403-1412, 1998. Go to original source...
  51. Wang, S., Basten, C.J., Zeng, Z.-B.: Windows QTL Cartographer 2.5, - In. Department of Statistics, North Carolina State University, Raleigh, 2011. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
  52. Willenborg, C.J., Wildeman, J.C., Miller, A.K., Rossnagel, B.G., Shirtliffe, S.J.: Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. - Crop Sci. 45: 2023-2029, 2005. Go to original source...
  53. Wu, Y., Cosgrove, D.J.: Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. - J. exp. Bot. 51: 1543-1553, 2000. Go to original source...
  54. Zhang, H., Cui, F., Wang, H.: Detection of quantitative trait loci (QTLs) for seedling traits and drought tolerance in wheat using three related recombinant inbred line (RIL) populations. - Euphytica ??: 1-18, 2013a. Go to original source...
  55. Zhang, H., Cui, F., Wang, L., Li, J., Ding, A., Zhao, C., Bao, Y., Yang, Q., Wang, H.: Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. - J. Genet. 92: 213-231, 2013b. Go to original source...