NORTH AFRICAN REGIONAL PROJECT ON FOOD LEGUME IMPROVEMENT

TUNISIA - ICARDA COOPERATIVE PROGRAM

Progress Report 1982/83

JCARDA O. Bos 5466 Ucopo, Syria INRAT 2080 Arena Tunisa

NORTH AFRICAN REGIONAL PROJECT ON FOOD LEGUME IMPROVEMENT

TUNISIA - ICARDA
COOPERATIVE PROGRAM

Progress Report 1982/83

ICARDA
P.O.Box 5466
Aleppo, Syria

INRAT 2080 Ariana Tunisia

	CONTENTS	Page
1.	INTRODUCTION.	1
2.	THE RESEARCH PROGRAM.	5
2.1	Experiments and Locations.	5
2.2	Analyses and Results.	10
3.	FABA BEAN IMPROVEMENT PROGRAM.	12
3.1	Results and Discussion.	12
3.1.1	International Yield Trials (IYT), ex-ICARDA.	12
3.1.2	Advanced and Preliminary Yield Trials.	15
3.1.3	International and National Screening Nurseries.	15
3.1.4	Disease Nurseries, ex-ICARDA.	16
3.1.5	Miscellaneous Nurseries.	18
3.2	General Discussion.	18
Append	dix A. Results of the Faba bean Breeding Trials and Nurseries in 1982/1983.	21
4.	CHICKPEA IMPROVEMENT PROGRAM.	41
4.1	Results and Discussion of Winter Planted Trials.	41
4.1.1	International Yield Trials (IYT), ex-ICARDA.	41
4.1.2	Preliminary and Advanced Yield Trials.	42
4.1.3	Ascochyta Blight Disease Nursery, ex-ICARDA.	46
4.1.4	National Screening Nursery.	46
4.1.5	General Discussion.	47
4.2	Results and Discussion of Spring Planted Trials.	48
4.2.1	International Yield Trials (IYT), ex-ICARDA.	48
4.2.2	Preliminary and Advanced Yield Trials.	52
4.2.3	Miscellaneous Trials.	55
4.2.4	International Screening Nursery, ex-ICARDA.	56
4.2.5	Fusarium Disease Nurseries.	57
	General Discussion.	58
Append	dix B: Results of the Chickpea Breeding Trials and Nurseries.	60

		Page
5.	LENTIL IMPROVEMENT PROGRAM.	82
5.1	Results and Discussion.	82
5.1.1	International Yield Trials, ex-ICARDA.	82
5.1.2	Advanced and Preliminary Yield Trials.	83
5.1.3	International and National Screening Nurseries.	85
5.2	General Discussion.	87
Append	lix C: Results of Lentil Breeding Trials and Nurseries.	90
6.	PERFORMANCE ACROSS LOCATIONS	102
7.	AGRONOMY TRIALS.	104
7.1	Date of Planting and Plant Population Trials.	104
7.2	Weed Control Trials.	107
7.3	Fertilization and Inoculation Trials.	110
7.4	Fungicide Seed Dressings.	110
7.5	Chickpea Spring/Winter Comparison Trial.	113

PREFACE

This report contains the results of a collaborative research program on food legumes between the Tunisian Program and ICARDA. The program was carried out within the Institut National de la Recherche Agronomique de Tunisie (INRAT), and conducted by Mr. Habib Halila (Head, Food Legumes, INRAT), Dr. Howard Gridley (Food Legume Breeder, ICARDA) and Mr. Patrick Houdiard (Research Associate, ICARDA) with the technical help of Mr. Hamouda Abdelkefi, Mr. Taoufik Ouslati, Mr. Hedi Ghanmi, Mr. Mokhtar Dridi, Mr. Moncef Farhani, Mr. Noureddine Ben Abdallah and Mr. Mustapha Jebabri (Ingenieurs-Adjoints, INRAT and Fretissa Farm).

1. INTRODUCTION.

This report gives the results from the second year of a cooperative project on food legume improvement between INRAT (Institut National de la Recherche Agronomique de Tunisie) and ICARDA. Last season's report contained a résumé on the initiation and research objectives of the project. The former will not be repeated and the latter still remain the development of improved cultivars of faba beans, chickpeas and lentils and of a superior and appropriate production technology, that together can ensure the farmer a more stable and improved economic return from the cultivation of these legume crops.

In last season's report the FAO data on food legumes in Tunisia showed that from the period 1966-70 to 1971-75 there was a 20% increase in the area sown to faba beans, whereas that for chickpeas and lentils remained static. More recent data from 'La Direction de la Production Végétale (DPV)' of the Ministry of Agriculture on the area, production and seed yield of these crops from 1971-72 to 1980-81 are given in table 1.1; the area and production data are also shown graphically in figure 1.1. Faba Beans and chickpeas showed a modest increase in area and production during the 10 year period, whereas lentils showed a dramatic decline during the first five years and

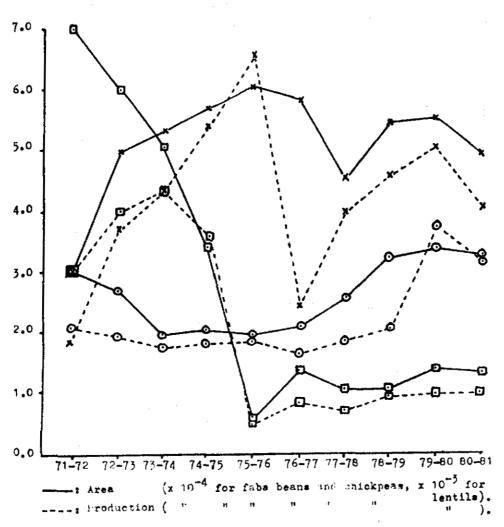

thereafter were steady at around a 1000 hectares and metric tonnes respectively. Yield levels, however, showed no discernible trend. As a mean over the period faba beans accounted respectively for 64% and 71% of the total area and production of these crops, whilst the corresponding figures for chickpeas were 33% and 31%, and for lentils were 4% and 9%. Also during the 10 years these three crops accounted for 80-90% of the total legume production and area in the country.

TABLE 1.1 AREA, PRODUCTION AND SEED YIELD OF FABA BEANS (F), CHICKPEAS (C) AND LENTILS (L) IN TUNISIA FROM 1971-72 TO 1980-81.

	Area (1000 hectares)				ction (1 c tonnes	Seed Yield (kg/ha			
Season	F	С	L	F	С	L	F	С	L
971-72	30.0	30.0	7.0	18.0	21.0	3.0	600	700	430
1972-73	50.0	27.0	6.0	37.0	19.0	4.0	740	700	670
973-74	53.5	19.9	5.1	43.5	17.6	4.3	810	880	830
974-75	57.9	20.6	3.4	54.1	18.4	3.6	930	890	1060
975-76	61.2	19.8	0.6	66.5	19.2	0.5	1090	970	770
976-77	58.5	21.7	1.4	24.8	16.9	0.8	420	780	540
977-78	45.9	25.9	1.1	40.0	18.8	0.7	870	730	640
978-79	54.9	32.5	1.1	46.8	21.8	0.9	850	670	820
979-80	55.4	34.2	1.4	51.2	37.6	1.0	920	1100	710
1980-81	49.4	32.8	1.3	40.9	32.0	1.0	830	970	800
lean	51.7	26.4	2.8	42.3	22.2	6.3			

⁽a) Source: 'Etude du secteur des légumineuses à graines'.
Ministère de l'Agriculture, Direction de la
Production Végétale, Tunis, Juin 1982.

FIGURE 1.1 AREA AND PRODUCTION OF FABA BEANS, CHICKFEAS AND LENTILS IN TUPISIA FROM 1971-72 TO 1980-1981.

X===X: Faba beans, 0==0: Chickpeas, 0==0: Lentils.

THE RESEARCH PROGRAM.

2.1 Experiments and Locations.

The agronomic experiments and breeding trials and nurseries were grown at one or more of four locations, namely Béja, El-Kef, Mateur and Moghrane, situated in the principal crop growing areas in the north and west of the country (figure 2.1). Details of the experiments for each of the three crops grown at the different locations is given in table 2.1, 2.2 and 2.3 respectively for faba beans, chickpeas and lentils.

The ICARDA derived breeding trials contained advanced breeding lines, segregating populations as well as genotypes being assessed for disease resistance. The advanced (AYT) and preliminary (PYT) yield trials contained genotypes selected for a superior performance during the last season. The total number of entries evaluated this season in the different breeding trials and nurseries were 481 for faba beans, 115 for winter sown and 432 for spring sown chickpeas and 308 for lentils.

Last year the agronomic trials examined crop responses to differing sowing dates and Rhizobial inoculation treatments and to differring levels

FIGURE 2.1 LOCATION OF EXPERIMENTAL TRIALS AND NURSERIES IN TUNISIA, 1982-83.

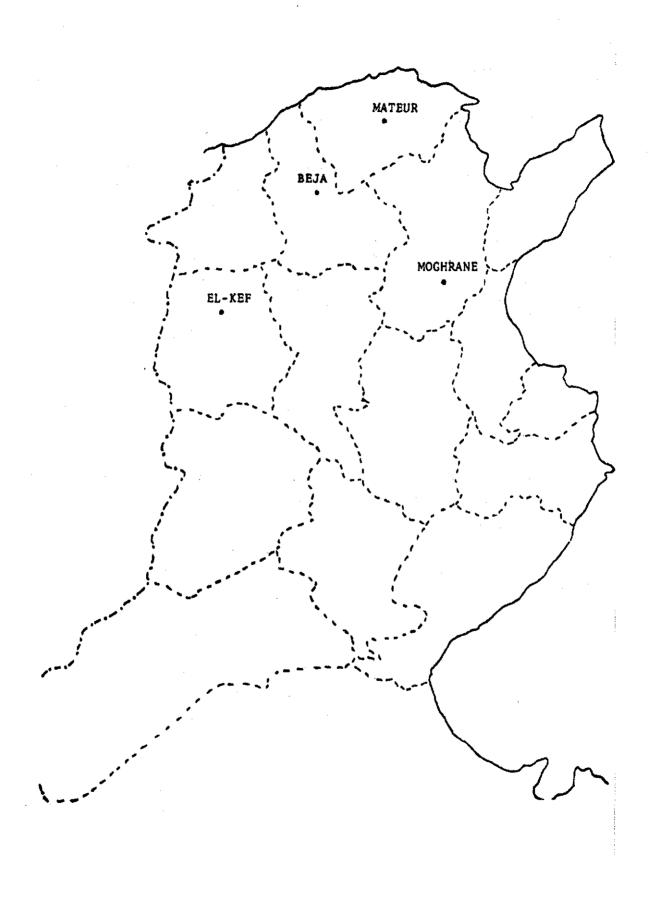


TABLE 2.1 FABA BEAN BREEDING AND AGRONOMY EXPERIMENTS CONDUCTED DURING 1982/83.

	Number o	f	:	Loca	tion	
Experiments	Replicates Tr	Entries/ eatments	Béja	Kef _.	Mateur	Moghran
Breading Trials					x ⁽²⁾	x ⁽²⁾
International Yield Trials(S)(1)	4	24	х	X	x (2)	x(2)
International Yield Trials(S)(2)	4	24	×	×	x (2)	x ` _ /
" Trials	3	15	x	x	x	
"" F3 Trials	3	12	x	×	x	
Preliminary Yield Trials (S1)	2	12	x	x		
" " " (S2)	2	16	x			
" " (L1)	3	12	×	X		
" " (L2)	4	14	x	x		
Advanced Yield Trials (L)	4	12	×	x		
Breeding Nurseries						
International Screening Nursery (S)	1	50	×	×	K	
" " (L)	1	33	x	×	x	
High Protein Content Entries	1	46	ж			
European Cultivars Screening Nursery	1	21	x			
Mational Screening Nursery	1	62	x	x		
Disease Nurseries						
International Orobanche Nursery	4	17	x	x		
" Rust "	2	24	x			
" Ascochyta "	2	20	x			
" Chocolate Spot "	2	35	×			
Disease Screening Nursery	1	32	x			
Agronomy Trials						
Date of sowing/Population Trial (L)	3	20	×	х		x
" " " (S)	3	20	x	x		x
weed Control Trial	4	12	x	x		

⁽¹⁾ L/S : large and small seeded trials.

⁽²⁾ Two replicates only grown.

TABLE 2.2 CHICKPEA BREEDING AND AGRONOMY EXPERIMENTS CONDUCTED DURING 1982/83.

	:				Loca	tion _		
	Experiments	Replicates Tr	Entries/ eatments	Béja	Kef	Mateur	Mogh- rane	:
۸.	WINTER PLANTED						(
	Breeding Trials							
	International Yield Trial	4	12	×	x		x	
	" F3 Trial-1	3	16	×	×			
	" -2	3	16	×	x			
	Preliminary Yield Trial	2	. 7	x				
	Advanced " "	4	13	×	ж		×	
	Breeding Nursery	-						
	National Screening Nursery	1	44	×	×			
	Disease Nursery	:	•					
	International Ascochyta Blight Nursery	2	51	x	×		×	
	Agronomy Trial							
	Winter/Spring Sowing Comparison	3	4	×	×	x	ж	
	SPRING PLANTED					•		
	Breeding Trials							
				,				
	International Yield Trial " Large Seeded	4	24 20	X X	×	x x		
	" Yield Trial	•						
	Preliminary Yield Trial-1	3	14	×	x			
	" " -2	2	16	×	×			
	Advanced Yield Trial -1	4	17	×	×			
	" " -2	3	16	x	x			
	F4 Population Trial	3	7	x	×			
	'Tall Types' Yield Trial	3	22	X				
	Breeding Nurseries							
	International Screening Nursery	1	71	×	×			
	National " "	1	44	×	×			
	Disease Nurseries							
	ICRISAT Root Rot/Wilt Nursery	2	75	×	•			
	ICRISAT Stunt Nursery	2	18	×				
	Fusarium Nursery	2	116	×				:
	Agronomy Trials							:
	International Weed Control Trial	4	12	×				
	Fertilizer/Inoculation Trial-1	4	8	×	×			
	" -2	4	6	×				
	Date of Sowing/Population Trial	3	20	×	×			
	Seed Treatment Trial-1	4 4	13 16	×				
	· · · · · · · · · · · · · · · · · · ·	3	12	X X				
	Fungicide Trial	,	14	^				

TABLE 2.3 LENTIL BREEDING AND AGRONOMY EXPERIMENTS CONDUCTED DURING 1982/83.

	Number of				cation	
Experiment	Replicates		Béja	Kef	Mateur	Moghran
	Tr	eatments				
Breeding trials						
International Yield Trial - L (1)	4	21	x	×	x	
" F3 Trial (Early types) 2	30	x			
Preliminary Yield Trial	. 3	16	x	×		
Advanced " "	4 .	10	×	x		×
Breeding Nurseries						
International Screening Nursery-L	1	43	×	x,	×	
" -Early	t	65	х	x	8	
" " -Tall	1	63	×	×	×	
National Screening Nursery	1	60	×	x		
Disease Nursery						
Orobanche Nursery	3	8	×	×		×
Agronomy Trials						
Weed Control Trial	4	12	×	×		
Date of Sowing/Population Trial	3	20	×	x		×
	*					

⁽¹⁾ Large Seeded Trial.

of plant population, and of phosphate and nitrogen application. This season the work was expanded to further examine the effectiveness of different herbicides on natural weed populations and of seed dressing treatments on disease incidence.

Although the rainfall was adequate for crop growth the distribution was abnormal in that approximately 80% of the total rainfall fell before the end of December. This somewhat delayed planting, but more importantly produced during March and April relatively hot and dry conditions, which were adverse to natural disease development. As a result disease development was insufficient in all three crops to allow effective screening of the genetic material under test. Unfortunately facilities for artificial inoculation are not presently available, although it is expected that a start will be made on developing these next season.

2.2 Analyses and Results.

All the replicated experiments were analysed as randomised blocks, and in discussing results the term significant has been used to describe a probability level equal to or less than 0.05; in certain instances the probability level has

. . . /

been noted in the text. Also, only if the analysis of variance produced a significant $(P \leqslant 0.5)$ 'F' value has a least significant difference (LSD) value been calculated, in order to assess whether the test entries had values that were significantly different from that of the check.

The following individual crops reports are a summary of the full research results, which are given in relevant appendices at the end of a report. All values given in the appendices and tables are the mean of the relevant number of replicates, and those underlined significantly exceeded the local check in that trial.

3. FABA BEAN IMRPOVEMENT PROGRAM.

Last season both trials and farmers' crops were severely attacked by Chocolate spot, and a late season attack by the stem borer was widespread. Also noted were locally severe infections of Orobanche spp., Alternaria leaf spot, Rhizoctonia root rot, Ascochyta blight and stem nematode. This season the environmental conditions were not conducive to natural disease development and thus the results presented below concentrate on seed yield. The full seed yield results from all trials and nurseries are given in appendix A (app. A), with a summary of the results contained in the following crop report. The local check used in the experiments was a Tunisian local cultivar grown by farmers, and is referred to either as the local check or simply the check.

- 3.1 Results and Discussion.
- 3.1.1 International Yield Trials (IYT), ex-ICARDA

A large seeded (IYT-L) and a small seeded (IYT-S) international yield trial were grown at Béja, El-Kef, Mateur and Moghrane. Unfortunately the seed yield results from the last location could not be analysed statistically owing to a large number of missing plots. In the IYT-L at the other three locations a number of entries

exceeded the local check by a considerable margin (app. A, table A1), but the 'F' test was not significant at any location, and only ILB 1799 (39 MB) exceeded the local check at all three locations. In the small seeded trial (app. 1, table A2), there was a significant (P < 0.01) difference between entries at Béja but not at E1-Kef and Mateur. At Béja seven entries significantly exceeded the check with a mean increase of 55%, and although these entries also exceeded the check at E1-Kef not all did so at Mateur (table 3.1).

In an F, population trial (app. A, table A3) significant differences between populations were only evident at one of the three locations, namely, El-Kef, although at this location all populations yielded less than the check. At Béja and Mateur some populations outyielded the local check but only X81S 42 did so at both. In another Fz population trial, comprised of early flowering types (app. A, table A4), population differences for seed yield were only significant at Béja, although no population significantly exceeded the check. At Mateur all but three populations exceeded the check but none did so at El-Kef, and only one population, namely, X81S 106, exceeded the check at more than one location.

TABLE 3.1 SEED YIELD (kg/ha) OF SUPERIOR ENTRIES IN AN IYT-S AT BFJA (B), EL-KEF (K) AND MATEUR (Ma) IN 1982/83.

Entry		Lo	cation		Mean	√Z Check
Designation	Pedigree	В	K	Ma	hean	CHECK
ILB 1217	Renia Blanka	2269	2509	2700	2493	125
1820	Giza 4	2144	2400	1931	2158	108
X75 TA146	79S 78978	2800	2228	2032	2353	118
ILB 1816	78S 48561	2244	2412	2788	2481	124
407	" 49395	2325	2400	1094	1940	97
X77sd 11	80S 45676	2156	2178	1844	2059	103
ILB 5	74 TA 12	2138	2175	2106	2140	107
Tunisian Local	Check	1494	1862	263 f	1996	100
					7	
S.E.		204.0	133.8	292.1		
d.f.		51	69	22		

3.1.2 Advanced (AYT) and Preliminary (PYT) Yield Trials.

The seed yield results of one large seeded AYT and two large seeded PYT's (1 and 2), grown at Béja and El-Kef, are given in appendix A, tables, A5, A6 and A7 respectively. Entries differed significantly (P < 0.01) in all trials, but only one entry, namely, ILB 398 (76 TA 56246), in the AYT at Béja significantly outyielded the check, and many entries yielded less.

The seed yield results of a small seed PYT-1 grown at Béja and El-Kef and a PYT-2 grown at Béja are given in appendix A, tables A8, and A9 respectively. Although the entries differed significantly in all three trials, no entry significantly outyielded the check, and again many yielded less.

3.1.3 International (ISN-ex ICARDA) and National (NSN) Screening Nurseries (non-replicated).

The seed yield results from a large and small seeded ISN, grown at Béja, El-Kef and Mateur are given in appendix A, tables A10a and A10b respectively. Also included in the tables are the coefficients of variation (CV) for the three repeated checks in each nursery; these were generally high and varied markedly within a nursery, suggesting that care be taken in interpreting the recorded yield of the test entries.

Be that as it may in the large seeded ISN eight entries exceeded the mean of the local check across locations, and of these only three .../

exceeded this check at more than one location; these three were: X77TA 82 (80S 44371), X79S 70 (80S 80026) and X79S 103 (80S 80064). In the small seeded ISN many entries exceeded the local check at individual locations and eight at each of the three locations (table 3.2). These eight plus a further nineteen also exceeded the mean of the local check across locations.

The seed yield results of an NSN, which contained entries from the Pullman Institute (Washington, USA) and was grown at Béja and El-Kef, are given in appendix A, table A11. At both locations the CVs for the two repeated local checks were reasonable, but the only entries exceeding a check were nine at El-Kef, which outyielded the mean of the small seeded check.

3.1.4 Disease nurseries, ex-ICARDA.

With little or no natural disease development this season it proved impossible to rate
entries for disease reaction in the Chocolate spot,
Ascochyta and Rust nurseries and a general
disease nursery. Accordingly only seed yields were
recorded and these are given in appendix A, tables
A12, A13, A14 and A15 respectively. Also recorded
in these tables is the mean seed yield and CV of
the local check, which although not randomised in
the nurseries was repeated at regular intervals.

TABLE 3.2 SEED YIELD (kg/ha) OF SUPERIOR ENTRIES IN AN ISN-S AT BEJA (B), EL-KEF (K) AND MATEUR (Ma) IN 1982/83.

En	try	L	ocation			% Check
Designation	Pedigree	В	К	Ma	Mean	
ILB 22	78S 49264	1650	2300	1425	1792	123
1816	78S 48561	1668	2100	1525	1764	121
33	74TA 95	1450	2450	1300	1733	119
X75TA 33	80\$ 43651	1575	2800	1150	1842	126
X77TA 60	808 43971	2000	2350	1525	1958	134
81	40384	1350	2350	1350	1683	115
86	44474	1350	2350	1100	1600	110
Tunisian Local	Check	1345	2030	1000	1458	100

Generally most entries yielded less than the mean of the check, which is not surprising as prior selection has concentrated on disease resistance rather than seed yield per se.

3.1.5 Miscellaneous Nurseries.

There were two nurseries in this category; one containing determinate and high protein entries from ICARDA and the other containing entries from the Plant Breading Institute, Cambridge, U.K. The seed yield results from these nurseries are given in appendix A, tables A16 and A17 respectively. In both nurseries the CV for the local check was very high making difficult any meaningful interpretation of the results. However, it was clear that the determinate types were generally poorly adapted as were some of the U.K. entries.

3.2 General Discussion.

Last season (1981-82) the experimental results showed little evidence that any of the genotypes tested possessed a superior seed yield to the local cultivars. Such results, however, may have been confounded by the high level of disease infection, particularly from Chocolate spot and Orobanche spp., encountered in experimental trials. This season there was little or

. . . /

no natural disease development at any test location, but the results have reinforced those of last season. Together they suggest that significant improvements in seed yield per se over the local cultivar are going to prove difficult.

In spite of the lack of disease problems this season, and the deficiency of past records, the devastation of farmers' crops last season, particularly from Chocolate spot, still indicates that the transfer of disease resistance(s), initially into the local cultivar, must have a high priority. Such a program is currently being undertaken, and hopefully this will at least help to stabilise levels of seed yield from year to year, and ensure a farmer of some return even in epidemic years.

In the meantime, efforts must be continued to improve seed yield per se, and in this context the performance of the F₃ populations this season was particularly disappointing. The aim of these is to supply a pool of genetic variation for selection under local conditions. However, their future usefulness would appear to be limited, as not only did none significantly outyield the local check at the test locations but many were considerably lighter yielding. Furthermore, there was no population that at the minimum gave a seed yield equivalent to that of the check at all test locations, suggesting that reselection is

not worth undertaking in any of the populations.

During the last two seasons the program in Tunisia has yield tested a few imported cultivars and genotypes from Europe, and a relatively large number of genotypes from ICARDA. The latter were selected for a superior yield performance in ICARDA's base program in Syria and subsequent distribution in international trials and nurseries. However, the lack of significant progress so far suggests that the selection pressure exerted for seed yield in Syria is not effective for conditions in Tunisia, and/or that faba bean genotypes/cultivars have a relatively narrow adaptation.

It would seem unlikely that a continuation of the present breeding strategy will, in the near future, produce significant yield advances per se over the local cultivars. Thus to counteract this selection and adaptation problem it would seem necessary that the future strategy must involve testing and selecting, under local environmental conditions, of a wide range of both early generations breeding lines and populations and germplasm entries from ICARDA's base program, and of cultivars from countries in Europe.

APPENDIX A. RESULTS OF THE FABA BEAN BREEDING TRIALS AND NURSERIES IN 1982/83.

Abbreviations used in tables.

1. Locations: B - Béja

K - E1-Kef

Ma- Mateur

No- Moghrane

2. <u>Data</u>: Kg/ha - seed yield of entries in these units.

*Lc - seed yield of entries expressed as a percentage of the Tunisian Local Check.

Data - those underlined were signifivalues cantly ($P \le 0.05$) superior to the Tunisian Local Check.

ND - data not available.

3. Statistics: C.V. % - coefficient of variation expressed as a percentage.

S.E. - standard error of entry mean.

d.f. - degrees of freedom associated with the standard error.

TABLE A1 SEED YIELD OF ENTRIES IN AN IYT-L AT FOUR LOCATIONS IN 1982/83.

		B		x	<u>. </u>	Ma	1	Mo	
Entry	Pedígree	Kg/Ha	ZLc	Kg/Ha	ZLc	Kg/Ha	ZLc	Kg/Ha	ZLc
LB 1814	Syrian Local Large	1681	86	3050	97	1538	90	657	99
1269	New Mammoth	2434	124	2969	94	2494	147	763	115
1266	Aquadulce	2356	120	2581	82	1531	90	ND	ND
29	75TA 26062	2203	112	2744	87	2400	141	ND	ND
17	78 S 49044	1868	95	2700	86	2450	144	838	126
- 32	74 TA 91	2109	107	3013	96	2663	157	807	122
1817	78 S 49896	1940	99	2838	90	2388	140	888	134
24	74 TA 63	2303	117	3000	95	2588	152	663	100
1817	76TA 56809	1984	101	2696	86	2788	164	ND	ND
263	77TA 88311	1450	74	2756	87	2494	147	750	113
1933	Seville Giant	1940	99	3000	95	1625	96	713	108
268	78 S 48426	1825	93	3163	100	2150	126	786	119
10	78 S 49907	2171	110	2944	93	2369	139	750	113
37	74TA 109	1975	100	2931	93	2405	141	744	112
285	78 S 48476	2468	126	2550	81	2451	144	763	115
1799	39 MB	2243	114	3319	105	2575	151	782	118
34	78 S 49841	1721	88	2963	94	2450	144	650	98
444	79 S 97513	1981	101	2888	92	2194	129	825	124
1813	S.L.L. (Long Pod)	1734	88	2644	84	1869	110	757	114
77TA 88	80 S 44539	2218	113	2756	87	2400	141	719	108
77TA 82	80 S 44371	1393	71	2788	89	2181	128	763	115
77sd 70	80 S 46341	1490	76	2869	91	1938	114	600	90
77TA 64	80 S 44027	1834	93	2525	80	2163	127	907	137
-	Tunisian Local Check	1966	100	3150	100	1700	100	663	100
ean		1992	·	2868		2242	-		
.v. z		27.7		13.8		21.3			
S.E.		275.9		198.0		337.8			
1.f.		68		68		22			

TABLE A2 SEED YIELD OF ENTRIES IN AN IYT-S AT FOUR LOCATIONS IN 1982/83.

	•		8	K		Ma		Mo	
Entry	Pedigree	Kg/Ha	7Lc	Kg/Ha	ZLc	Kg/Ha	%Lc	Kg/Ha	7Lc
LB 1812	Syrian Local Medium	ND	ND	2328	125	2763	105	1063	92
1217	Renia Blanka	2269	152	2509	135	2700	103	1200	104
1820	Giza 4	2144	144	2400	129	1931	73	988	86
9	74TA 22	ND	ND	2062	111	2669	101	925	80
31	87	110	ND	2474	133	1850	70	ND	МD
31	85	1675	112	2193	1 18	2256	86	1025	89
49	133	1944	130	2200	118	2363	90	625	54
285	77TA 88118	tip	ND	2018	108	2375	90	ND	ND
287	77MS 88323	1560	104	2168	116	2275	86	725	63
K75TA146	79 S 78978	<u> 280</u> 0	187	2228	120	2039	77	1000	87
ILB 905	78 S 35513	1888	126	1981	106	2241	85	800	70
1816	48561	2244	150	2412	130	2788	106	1100	96
407	49395	2325	156	2400	129	1094	42	ND	ИD
269	74TA 367	1960	131	2293	123	1687	64	1113	97
336	78 S 48437	1788	120	2118	114	2388	91	888	77
269	48821	ND	ND	2205	118	- 2269	86	638	55
320	48434	1675	112	2003	108	2225	85	675	59
277	_	ND	ND	2168	116	2306	88	ND	ND
339	78 S 48504	1994	133	2043	110	2106	80	738	64
360	74TA 498	2016	135	2225	119	1994	76	900	78
X77sd 48	80 S 45779	1725	115	2080	112	1525	60	1138	99
X77sd 11	45676	2156	144	2178	117	1844	70	825	72
ILB 5	74TA 12	2138	143	2175	117	2106	80	963	84
-	Tunisian Local Check	1494	100	1862	100	2631	100	1150	100
Mean		1988		2197		2205			
c.v. z		20.5		12.2		18.7	7		
S.E. d.f.		204.0 51		134.0 69		292.1 2.2	1		

TABLE A3 SEED YIELD OF ENTRIES IN AN F3 TRIAL AT THREE LOCATIONS IN 1982/83.

	1	В		<u>K</u>	<u> Ma</u>	
Entry	Kg/Ha	7Lc	Kg/Ha	ZLc .	Кд/На	%Lc
X 81 S 49	1402	132	1599	70	1828	66
50	1093	103	1796	79	1694	6:
54	1432	135	1852	81	2621	95
38	1366	129	2158	94	2189	79
23	971	91	1902	83	2727	99
27	821	77	1566	69	2488	90
42	1071	101	1652	72	3266	118
45	1196	113	1746	76	2683	97
115	1355	127	1963	86	2272	82
124	1152	108	1757	77	2277	82
184	971	91	1857	81	3500	127
4	1271	120	1693	74	2160	78
6	1355	127	1963	86	2344	85
ILB 1814	816	77	1836	80	2844	103
Tunisian Local Check	1063	100	2285	100	2761	100
Mean	1156		1842		2510	
c.v. X	22.2	!	12.0	J	32.4	
S,E.	147.9	,	127.1		468.9	
d.£.	28		28		28	

TABLE A4 SEED YIELD OF ENTRIES IN AN F3 TRIAL (EARLY FLOWERING TYPES) AT THREE LOCATIONS IN 1982/83.

	B		K		<u> </u>	а
Entry	Kg/Ha	%Lc	Kg/Ha	7Lc	Kg/Ha	. %L c
X 81 S 34	471	64	1960	93	2750	151
12	665	91	1677	79	2344	129
106	988	135	1647	78	2017	111
125	443	61	1277	60	3272	180
25	427	58	1806	85	1478	81
3	635	87	1843	87	2439	134
10	488	67	1674	79	3072	169
56	721	98	1952	92	258 9	142
32	727	99	1838	87	2361	130
19	566	77	1516	72	1792	99
ILB 1814	882	120	2109	100	1733	95
Tunisian Local Check	732	100	2114	100	1817	100
Mean	646		1788		2305	
c.v. 7	30.2	2	17.	3	29.2	
S.E.	112.8	3	178.5	5	388.8	
d.f.	22		21		22	

TABLE AS SEED YIELD OF ENTRIES IN AN AYT AT TWO LOCATIONS IN 1982/83.

Entry	Pedigree/ selection	В		K	
		Kg/Ha	7Lc	Kg/Ha	7Lc
ILB 24	74TA 63	1719	93	1256	63
34	78 S 49841	1331	72	1728	86
398	76TA 56246	2531	138	2012	101
1266	Aquadulce	1468	80	1859	93
1269	New Mammoth	2456	133	1968	98
1799	39 MB	2012	110	1943	97
1805	Elegant 5 MC t	2381	129	1850	93
1814	Syrian Local Large	1768	96	1946	97
1817	Lebanese Local	1806	98	1781	89
	Large				
	Ascott	965	52	56 5	28
	Talot	1462	79	1506	75
	Tunisian Local Check	1840	100	2000	100
Mean	·	1813		1702	
c.v. z		26.6		20.3	
S.E.	•	241.5		174.1	
i.f.		32		33	

TABLE A6 SEED YIELD OF ENTRIES IN A PYT-L N° 1 AT TWO LOCATIONS IN 6.

	Pedigree/		В	K	
Entry	Selection	K g /Ha	% Lc	Kg/Ha	% Lc
175TA 115	78 S 33200	1670	87	1779	86
LLB 268	78 S 268	1533	80	1683	82
274	74TA 374	1387	72	1883	91
371	74TA 516	1358	72	1962	95
1814	Syrian Local Large	2037	106	2299	111
1815	Lattakia Local	1575	32	1833	89
1817	76TA 56809	1316	68	1725	97
1821	Turkey Local	1887	98	2008	97
-	Ascott	538	28	437	21
-	Talot	1125	5 8	1850	90
-	Tunisian Local Check	1926	100	2064	100
Mean		1491		1775	
c.v. z		20.5		18.8	
S.E.		176.8		192.9	
đ.f.		20		19	

TABLE A7 SEED YIELD OF ENTRIES IN A PYT-L N° 2 AT TWO LOCATIONS IN 1982/83.

	В		K	
Entry	Kg/Ha	7Lc	Kg/Ha	%Lc
Johnson Wonderful	374	22	550	39
Master Piece Green Long pod	381	23	437	. 31
Aquadulce	1664	97	1187	84
Bunyards Exhibition	756	44	293	21
Four Seed Green Windsor	312	19	425	30
White Windsor	468	27	381	27
Sutton	465	27	728	52
Three fold White	384	23	456	3 2
Express	. 599	35	456	32
Aquadulce Claudía	1790	105	868	62
Fill Basket Windsor	431	25	436	31
Tunisian Local, Check 1	1628		1518	
" ' Check 2	1678	100	1331	100
" , Check 3	1815		1368	
Mean	911		746	
c.v. z	36.1		29.3	
S.E.	164.5		109.1	
d.f.	38		38	

TABLE A8 SEED YIELD OF ENTRIES IN A PYT-S N°1 AT TWO LOCATIONS IN 1982/83.

Entry	Pedigree/ Selection	ВВ		к	
		Kg/Ha	%Lc	Kg/Ha	7Lc
ILB 269	74TA 367	1037	73	2106	101
287	77MS 88324	1000	71	1725	83
320	78 S 48434	1106	78	1644	79
905	78 S 35513	1125	79	1863	90
1816	78 S 48561	837	59	117 5	56
1820	Giza 4	1168	82	166 9	80
	FVL P.L. V.(1)	1256	89	1775	85
	FVL P.L. B.(2)	1268	89	1906	92
	Ascott	200	16	713	34
	Talot	906	64	190 0	91
	Tunisian Local Check	1418	100	2081	100
Mean		1029		1687	
c.v. z		18.2		11.4	
S.E.		132.4		1361-2	
d.f.		10		10	

⁽¹⁾ Local population - green seeded.

⁽²⁾ Local population - white seeded.

TABLE A9 SEED YIELD OF ENTRIES IN A PYT-S N° 2 AT BEJA IN 1982/83.

Entry	Pedigree/ Selection	Kg/Ha	% Lc
zurty			
ILB 285	77TA 88118	1312	108
317	77MS 88338	1275	105
352	77MS 88158	987	81
35 6	77MS 88165	1531	126
INAM 709	INRAM F 315	1406	115
1001	296	968	79
1005	303	1156	.94
1006	305	1250	103
1019	317	1181	97
1026	327	1362	112
	FVL P.L. V.	1050	86
	FVL P.L. B.	1362	112
	Ascott	217	18
	Talot	1162	95
	Tunisian Local Check	1218	100
Mean		1163	
C.V. %		21 &	
S.E.	•	179.1	
i.f.		14	

TABLE A10 a. SEED YIELD OF ENTRIES IN AN ISN-L AT THREE LOCATIONS IN 1982/83.

Entry	Pedigree	В	к	Ма	<u>-</u>
ILB 263	77TA 88311	900	1050	1350	
X75TA43	78 S 33120	1100	1375	1550	
ILB 268	78 S 48426	1025	1150	1675	
37	74 TA 109	1175	2400	1650	
41	76TA 56297	813	1950	1050	
1799	79 MB	1250	3200	650	
34	78 S 49841	1012	2400	1550	
444	78 S 97513	1150	3000	1225	
1805	5 MCI	1263	2725	2100	
X77TA64	80 S 44027	1325	2300	1950	
X75TA116	79 S 79180	1425	2450	775	
ILB 1814	79 S 546	925	1900	1275	
ILB 1814	79 S 653	1150	2425	1125	
X77TA 88	80 S 44539	1150	3400	850	
X77TA 31	80 S 43587	1350	1900	1875	
ILB 1814.	79 S 4	1250	2525	ND	
K77TA 82	80 S 44371	1375	3250	1850.	
ILB 4	-	1375	2875	2650	
X77Sd 70	80 S 46341	1075	2800	2300	
X77TA 3	80 S 43051	1125	2125	775	
K77TA 89	80 S 44552	900	1550	2550	
X77TA 72	80 S 44178	1050	2250	1400	
K79 S 12	80 S 80002	1350	2750	2700	
K79 L153	80 S 81054	1412	2950	2550	
k79 S160	80 S 80128	1050	3000	250C	
K79 \$171	80 S 80135	1400	2750	2050	
(79 S 72	80 S 80028	1100	2850	1950	
K79 S155	80 S 80123	1400	3000	1150.	
(79 S 70	80 S 80026	1062	3350	2950	
K79 S103	80 S 80064	1375	3100	3400	
CHECK GENOTYPES					
LB 1814	Syrian Local Lar	ge 1125	600	800	
	5)11011 50011 501	1025	2750	1500	
	•	1875	1900	1650	
		1100	3600	1925	
lean		1281	2213	1469	
.v. 7	•	31.0	57.8	32.6	
LB 1270	Reina Blanca	1475	3275	1550	
		1462	2475	1850	
		1950	3250	2750	
		1425	2750	3150	
ean		1578	2938	2325	
.v. %		15.8	13.3	32.3	
unisian Local		1725	2525	650	
		1425	3275	1050	
		1450	3075	1875	
		1200	3350	3200	
ean		1450	3056	1694	

TABLE A10b. SEED YIELD OF ENTRIES IN AN ISN-S AT THREE LOCATIONS IN 1982/83.

Entry		Pedigree	В	K	Ма	
ILB	22	78 S 49264	1650	2300	1425	
	905	78 S 35513	1050	2050	1100	
	1816	78 S 48561	1668	2100	1525	
	269	74TA 367	1350	2200	1175	
	336	78 S 48437	1300	2150	1150	
	33	: 74TA 94	1450	2450	1300	
	360	74TA 498	1250	1850	1100	
	356	77MS 88165	1425	3725	825	
	287	77MS 88323	1350	2150	900	
	328	77MS 88138	1350	2050	850	
	1105	79 S 97330	1100	2400	1400	
(75TA	150	80 S 50088	1050	2500	1475	
(75TA	193	80 S 50106	1100	2000	800	
(75TA		80 S 43064	1275	2600	750	
75TS		80 S 43209	750	1925	825	
75TA		80 S 43238	1300	2450	1275	
75TA		80 S 43341	700	2000	1050	
99 11	19	80 S 43383	800	1900	475	
# #		80 S 43651	1575	2800	1150	
# 11		80 S 43773	700	2300	1225	
77TA		BO S 43971	2000	2350	1525	
	60	43977	1150	2600	1500	
	66	44031	1000	1750	975	
	66	44045	800	2000	1100	
	66	44056	1300	2200	1025	
	70	44150	1700	2250	1475	
	72	44203	800	2275	1050	
	81	40384	1350	2350	1350	
	82	44367	1250	2475	925	
	83	44384	1000	2000	1025	
	86	44474	1350	2350	1100	
	88	44545	1100	2050	1175	
	101	44812	1200	2300	975	
	101	44815	1300	2750	950	
	117	45050	1000	2600	1025	
	119	45089	450	2450	575	
	148	45579	850	2150	1125	
77Sd	11	80 S 45676	1150	2050	1450	
,,,,,	13	45727	500	2600	1525	
	14	45777	550	2250	1450	
	48	45779	550	1700	1750	
77TA	48	80 S 43856	1250	2625	1725	
,,,,	48	43859	1250	2575	1925	
	118	45057	950	2250	1425	
778d	60	46121	1250	2850	1850	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	vv	14104	1230	2030	1030	

• • • /

TABLE A10b(continued)

Entry	Pedigree	В	K	Ма
CHECK GENOTYPES				
ILB 1812	Syrian Local Medium	1575	2400	1575
11.6 1012	Syllan Local Medidin	1700	2300	1300
		1550	2550	1150
		1000	3000	1425
		800	2600	1475
Mean		1325	2570	1385
c.v.z		30.0	10.4	11.9
ILB 1811	Syrian Local Small	1250	2375	950
	2,7.22 20001 0	1050	1850	\$50
		1050	1925	925
		1175	2200	700
		300	1850	1025
ean		965	2040	830
c.v. z	·	39.5	11.5	23.9
Tunisian Local Check	Tunisian Local	1000	1700	1325
Oursian Tocal Cueck	Indiates Fores	1900	1750	400
		1750	2250	1300
		1350	2550	1150
		725	1900	825
ean		1345	2030	1000
.v. z		36.7	17.8	39.0

TABLE A11 SEED YIELD OF ENTRIES IN AN NATIONAL SCREENING NURSERY AT TWO LOCATIONS IN 1982/83.

Entry	Béja Kg/Ha	El-Kef Kg/Ha
203154	2700	1850
221516	150	900
222128	3001	1250
222216	300	1000
223303	900	700
223418	1200	1500
244062	900	1100
244063	1000	1900
244345	1200	900
251231	1800	1400
251232	2150	2300
251331	2000	2150
253425	1400	2200
253806	2100	2000
253807	1200	1800
253808	1900	1600
253809	2100	1700
254001	2150	1100
254002	2000	1100
254003	1150	900
254003	1500	1400
-	600	150
254005	2000	2500
254920	1600	1000
262912	·	
262913	1500	2000
270055	500	800
270056	600	350
271634	2200	1600
274004	900	850
275641	800	500
284345	1250	1700
284349	1100	1300
286437	1200	1200
291010	1200	1600
300169	700	1500
306699	250	500
319896	500	1300
319897	400	500
319898	400	750
319899	400	900
319900	300	1300
347262	1800	1500
3 58 26 1	1250	1600
358263	. 1400	2000
358264	1800	2000
369495	500	1800
Mean of local check large seeded	4775	3045
C.V. 7	16.0	10.0
Mean of local check small seeded	2425	1875
C.V. %	22.7	13.9

TABLE A12 SEED YIELD OF ENTRIES IN A CHOCOLATE SPOT NURSERY AT BEJA IN 1982/83.

Entry	Kg/Ha	Entry	Kg/Ha	
BPL 110	1250	BPL 1548	575	
112	975	1550	1425	
261	650	1556	650	
266	1075	1648	950	
274	1350	1689	1350	
710	1025	1749	950	
1179	850	1752	450	
1196	2650	1758	500	
1278	1100	1764	525	
1390	725	1803	1575	
1821	1125	1831	1275	
Syrian Local Large	1450	1832	1275	
Rebaya 40	450	1841	1100	
BPL 470	1800	1876	1725	
471	925	2485	1775	
472	1100			
1538	575	Mean of Local check	1582	
1544	950	C.V. 7	22.9	
1546	1100			
1547	1075			

TABLE A13 SEED YIELD OF ENTRIES IN AN ASCHOCHYTA NURSERY AT BEJA IN 1982/83.

Entry	Kg/ha	Entry	Kg/Ha	
BPL 472	1500	BPL 465	1550	
460	2000	161	1300	
471	1075	2485	1575	
ILB 161	2150	Giza 4	900	
382	2175	ILB 1814	1550	
549	1400	BPL 710	1250	
37	1625	BPL 1179	1225	
BPL 230	1250	X 75 TA46	1250	
365	1725			
369	450	Mean of Local	1808	
435	1975	Check		
436	1225	C.V. %	14.4	

TABLE A14 SEED YIELD OF ENTRIES IN A RUST NURSERY AT BEJA IN 1982/83.

Entry	Кд/На	Entry	Kg/Ha
BPL 1179	1300	BPL 1547	1100
710	1200	1548	625
266	900	1763	1550
274	1500	1764	600
460	1625	F 6	1975
461	1800	F 17	2450
470	1625	80Lat1\$563-3	950
471	1175	80Lat15563-1	1550
472	1600	ILB 1814	1475
1055	1275		
1056	2050	Mean Local Check	2118
1058	1500		
1107	2250	C.V. %	27.
1538	1275		
1543	1350		

TABLE A15 SEED YIELD OF ENTRIES IN A GENERAL DISEASE NURSERY AT BEJA IN 1982/83.

Entry		Kg/Ha	Entry	Kg/Ha	
BPL	161	225	BPL 1089	850	
	165	1500	1163	1850	
	230	2000	1394	1400	
	262	750	1599	1200	
	444	1425	1873	1300	
	471	1550	938	1250	
	666	2350	80 SL15563-1	150	
	617	1000	- 3	600	
OLatt	. 14989-2	1200	-4	1250	
	15025-2	1350	Rustatt ILB1555	1650	
	15035-1	800	ILB 1038	50	
	15041-2	1925	BPL 195	350	
BPL	18	1300			
	262	1650	Mean of Local	2599	
	321	1750	C.V. % Check	19.3	
	325	ND			
	357	1900			
	444	1100			
	666	1900			

TABLE A16 SEED YIELD OF ENTRIES IN THE DETERMINATE AND HIGH PROTEIN SCREENING NURSERY AT BEJA IN 1982/83.

s 26032	433	
26057	300	
26060	333	
26075	400	
26125	217	
26145	700	
26147	733	
26241	333	
26253	433	
26254	200	
26257	233	
26263	200	
26278	433	
26320	700	
26325	167	
26341	433	
26342	383	
26349	467	
26365	150	
26385	433	
26416	400	
26422	600	
26518	333	
26526	400	
26543	267	
26544	433	
26550	467	
26561	233	
26562	253	
26563	933	
26575	933	
26586	867	
26672	433	
26755	1217	
PL 171	733	
373	1100	
505	1100	
520	1167	
521	300	
542	1517	
552	1033	
557	1667	
620	733	
661	1067	
nisian Local	300	
**	500	
	367	Mean
	350 233	nean
	500	
	1333	C.V.Z
	1433	
11 11	1033	

TABLE A17 SEED YIELD OF ENTRIES IN A PLANT BREEDING INSTITUTE SCREENING NURSERY AT BEJA IN 1982/83.

Entry	Kg/Ha	
PBI Cambridge line 76	25	
" " YT99/	12	
" " 67	1737	
Banner	0	
linica	0	
Maris Bead	1675	
Figer	637	
ierz Freya	125	
PBI Cambridge line 73	1125	
" 224	150	
" " 47/2	0	
" " 34/1	37	
" " 335	50	
11 11 11 6	200 125	
010	125 150	
olar	1625	·
Blaze	862	
Relon	875	
dontica Cockfield	12	
Tunisia Local Check	1500]	
	250	608
	62 Mear	•
••	162 C.V.	. 2 113.6
••	1175	
**	12	
**	1600	
••	100]	
**	•	

4. CHICKPEA IMPROVEMENT PROGRAM.

Last season there was sufficient natural development of both Ascochyta blight and Fusarium wilt to adequately screen material for resistance to these pathogens. However, this season only the latter developed sufficiently to provide adequate screening, although this coming season it is expected that facilities for the artifical inoculation with Ascochyta blight will be developed. The full results from all the trials and nurseries are given in appendix B (app. B) with a summary of the results contained in the following crop report. The local check used in the experiments was a Tunisian local cultivar, which is grown particularly in the Béja region, and is referred to either as the local check or simply the check.

- 4.1 Results and Discussion of Winter Planted Trials.
- 4.1.1 International Yield Trials (IYT), ex-ICARDA.

The seed yield results from an IYT grown at Béja and El-Kef are given in appendix B, table B1; the trial was also grown at Moghrane, but unfortunately harvest problems prevented the collection of any reliable data. Although the 'F' test was not significant at either of the two previous locations, it was encouraging to note that all entries except one, namely, FLIP81-34W, outyielded

the check at both locations. The performance of the five heaviest yielding entries is shown in table 4.1.

Two IYT's (1 and 2), containing F₃ populations, were grown at Béja and El-Kef and the seed yield results are given in appendix B, tables B2 and B3, respectively. For the IYTF₃-1 there was no significant difference between entries at either location, but all populations exceeded the check mean across locations, and the performance of the best five is shown in table 4.2. In the IYTF₃-2 the 'F' test was significant at both locations, with the check significantly out-yielded by X81TH 48 at Béja and by all populations except X81TH 171 at El-Kef. The performance of the five heaviest yielding populations across locations is shown in table 4.3.

4.1.2 Preliminary (PYT) and Advanced (AYT) Yield Trials.

The seed yield results from a PYT grown at Béja and an AYT grown at Béja and El-Kef are given in appendix B, tables B4 and B5 respectively. In the PYT entry differences were significant, and although no local check was included in the trial all entries except FLIP 81064 and FLIP 81080 significantly exceeded ILC 3279. As this last

. . . 1

TABLE 4.1 SEED YIELD (kg/ha) OF SUPERIOR ENTRIES IN A WINTER SOWN IYT AT BEJA (B)
AND BL-KEF IN 1982/83.

Entr	y	Locat	Mean		
Designation	Pedigree B			K	7 Check
ILC 95		1965	2133	2049	125
482	Acc. N°2 26780-68	1850	2506	2178	133
484	26783-68	2215	2199	2207	135
FLIP 81-41W	x79 TH 50	2253	2048	2150	131
50W	X79 TH 151	2203	2365	1883	115
Tunisian Local	Check	1713	1563	1638	100
S.E.		195.0		207.8	
d.f.		33		30	

TABLE 4.2 SEED YIELD (kg/ha) OF SUPERIOR F, POPULATIONS IN AN IYT N°! AT BEJA (B) AND EL-KEF (K) IN 1982/83.

	1	Entry		Locati	on		
Designa	tion	Pedigree		В	К	Mean	7 Check
X81 TH	56	ILC 1920 x II	LC 3279	938	2038	1488	159
	111	191 x	202	850	1959	1405	150
	112	191 x	482	788	1990	1389	149
	120	200 x	484	938	1975	1457	156
	126	202 x	484	763	1929	1346	144
Tunisi	an Loca	l Check		475	1392	934	100
S.E.				213.3		159.0	
d.f.				30		30	

TABLE 4.3 SEED YIELD (kg/ha) OF SUPERIOR F POPULATIONS IN AN IYT N° 2 AT BEJA (B) AND EL-KEF (K) IN 1982/3 83.

	Entry				Local	ion		
Designation		Pedigree		ee	В	K	Mean	7 Check
X81 TH	29	ILC 610	x I	LC 202	1550	<u>185</u> 9	1705	141
	48	1920	x	201	1763	<u>1959</u>	1861	154
	108	72	x	262	950	2104	1527	126
	1 9 0	272	×	191	1075	2025	1550	128
	203	3279	x	3355	1200	2111	1656	137
Tunisi	an Loca	l Check			1175	1246	1211	100
S.E.					188.3	325.5		÷
d.f.					28	28		

genotype had a seed yield similar to the check in the IYT (app. B, table B1), such entries may tentatively be considered as superior to the check. Although the entries differed significantly in the AYT no entry significantly outyielded the check, and many yielded considerably less.

4.1.3 Ascochyta Blight Disease Nursery, ex-ICARDA.

The low incidence of blight prevented any disease screening of the entries in this nursery grown at Béja, El-Kef and Moghrane. Accordingly only the seed yield results are given in appendix B, table B6. Although these are of little intrinsic value without Ascochyta ratings, it is perhaps worth noting that ILC-183, -195, -249 and FLIP 81-41W all exceeded the mean of the check at each of the three locations.

4.1.4 National Screening Nursery (NSN).

The seed yield results of the NSN grown in winter and spring at El-Kef are given in appendix B, table B7. Of the 37 entries 16 outyielded the check in winter and 8 in spring, but only 4 did so in both plantings. The correlation between the

seed yield of the entries in the different plantings was low and non-significant (r = 0.12, df = 41).

4.1.5 General Discussion.

With little or no Ascochyta blight evident this season the entries in the above trials will not have had any inherent yield advantage over the local check accruing from Ascochyta blight resis-The poor performance of the entries in the AYT probably reflected their original selection for Ascochyta blight resistance, with little attention paid to seed yield per se. It was therefore encouraging that the more recent material emerging from ICARDA's breeding program in the IYT, namely the FLIP 81-...W genotypes, generally outyielded the check even if not significantly. This was also true for the F_{τ} populations and there is hope that reselection will produce further improvements in seed yield. However, all the genetic material in these trials has a seed size too small to meet consumer preference in Tunisia, and efforts are and will be made to improve this character. Furthermore, on a note of caution, it was discouraging to note that the performance of the entries ILC-195, -202, -482 and -484, relative to the check and common to the AYT and IYT, differed markedly between trials at the same location. problem is considered further in section 6.

4.2 Results and Discussion of Spring Planted Trials.

Last season the experiments in a certain area of land at the Béja station were seen to be heavily infected with Fusarium wilt, and a part of this area was designated as a wilt sick plot (WSP) for screening in future seasons. Although the WSP was utilised this season for screening material, it was discovered that another area of land planted to chickpea trials was also heavily infected with Fusarium wilt, and this also provided effective screening. All Fusarium ratings reported were made on a visual basis using a 1 to 9 scale where 1 = no symptoms and 9 = complete kill of the plants in a plot.

4.2.1 International Yield Trials (IYT), ex-ICARDA.

The seed yield results of an IYT at Béja, El-Kef and Mateur are given in appendix B, table B8. Also included in table B8 are visual ratings of the entries to Fusarium wilt infection at Béja. At this location entries differed significantly ($P \le 0.001$) for both seed yield and Fusarium ratings, and the deleterious effect of the pathogen on seed yield was shown by a negative correlation of -0.89 ($P \le 0.001$) between the two characters. However, it was encouraging

that firstly, the five top yielding entries combined a significantly heavier seed yield and significantly lower Fusarium rating than the check (table 4.4). Secondly, that a further six genotypes also significantly outyielded the check although having Fusarium ratings similar to that of the check (table 4.4). However, the yield advantage of these eleven entries was not evident at El-Kef and Mateur where symptoms of Fusarium wilt were not evident (app. B, table B8).

For a large seeded IYT the seed yield results and Fusarium ratings from Béja and the former from E1-Kef are given in appendix B, table B9. At Béja entries differed significantly for both characters and these were again negatively correlated (r = -0.81, $P \le 0.001$). Of the top five yielding entries at Béja (table 4.5) only ILC 136 significantly outyielded the check, and only this entry and ILC 134 had a significantly lower Fusarium rating than the check. At E1-Kef the entries did not differ significantly for seed yield, and here with no evidence of Fusarium infection, ILC 136 yielded the same as the check.

TABLE 4.4 SEED YIELD (kg/ha) OF SUPERIOR ENTRIES IN AN IYT AT BEJA, EL-KEF AND MATEUR AND FUSARIUM RATINGS (FR) AT BEJA IN 1982/83.

Entry		Béja	Locatio	ត	E1-Ke	f and Mateur	Location	S
Designation	Pedigree	FR	Yield	7Lc	K	Ma	Mean	%Lc
ILC 237	Coll. N°K 2187	1.5	1450	346	1575	1756	1666	113
493	Acc. N° 28119-69	3.8	1138	272	1481	1431	1456	99
FLIP 81-52	NEC 1540 x P1630	4.0	1194	285	1488	1600	1544	105
-54	219 x F 61	3.5	1656	395	1369	1479	1424	97
-65	741300-4P-4P	3.3	1619	386	1519	1344	1432	97
ILC 4		4.8	1006	240	1438	1638	1538	104
35		5.5	738	176	1438	1531	1485	101
295	12-071-02122	5.3	<u>731</u>	174	1206	1463	1335	91
1929	Syrian Local	5.3	881	210	1325	1425	1375	93
FLIP 81-31	NEC 1656 x E 100	4.3	988	236	1088	1600	1344	91
-40	14 x NEC 132	4.8	931	222	1444	1444	1444	98
Tunisian Local	l Check	5.0	419	100	1556	1388	1472	100
S.E.		0.31	92.7		169.0	ı	124.1	
d.f.		69	67		66		67	

TABLE 4.5 SEED YIELD (kg/ha) OF SUPERIOR ENTRIES IN AN IYT-L AT BEJA AND EL-KEF AND FUSARIUM RATINGS (FR) AT BEJA IN 1982/83.

	Béj	a Locatio	on	El-Kef Location		
Entry		Seed		Seed		
	FR	Yield	XLc	Yield	7Lc	
ILC 83	4.5	500	127	1044	87	
136	2.0	1000	254	1194	100	
165	4.0	606	154	1050	88	
451	4.5	650	165	1088	91	
2487	4.0	694	176	1106	93	
Tunisian Local Check	5.0	394	100	1194	100	
S.E.	0.58	113.0		106.7		
d.f.	56	56		57		

4.2.2 Preliminary (PYT) and Advanced (AYT) Yield Trials.

The seed results from a PYT-1 and PYT-2, both grown at Béja and El-Kef, are given in appendix B, tables B10 and B11 respectively. As the trials were grown on wilt infested land at Béja the Fusarium ratings for the entries are also included in the tables, and in each trial the correlation between these ratings and seed yield was negative and significant $(P \leq 0.001)$ and greater than -0.93.

In both trials at Béja the local check was almost completely killed by Fusarium wilt and the entries differed significantly for seed yield. In the PYT-1 all except three ICARDA derived entries significantly outyielded the check, and the top four yielding entries were the Béja selections PL.Se. Be.81 -27, -28, -40 and -41, which stemmed from single plant selections for Fusarium resistance in the local cultivar/landrace Amdoun. In the PYT-2 all the PL.Se. Be.81-... selections, derived as above, were significantly better than the check for seed yield and Fusarium resistance, whereas the two ICARDA derived entries (FLIP 80-51 and -30) were moderately susceptible and gave a light seed yield (app. B, table B11). It is also noteworthly that the seed weight of the PL.Se. Be.81-... selections was at least double that of the ICARDA entries (app. B, table B11),

indicating one of the quality requirements that any new cultivar must possess prior to release. At El-Kef there was no significant difference between the entries for seed yield in either trial.

The AYT-1 was grown at E1-Kef and in wilt infested land at Béja and contained a further ten PL.Be.Se. 81-... selections, with Fusarium ratings and seed yield of the entries given in appendix B, table B12. At Béja seed yield and Fusarium ratings of the entries were negatively correlated (r = -0.95, P < 0.001) and all entries significantly outyielded the check, whereas at E1-Kef there was no significant difference between the entries for seed yield. Data on the top five yielding entries in each of the above three trials at Béja are given in table 4.6.

Both the AYT 2 and F₄ population trial contained entries from ICARDA, but inneither trial did the entries differ significantly for seed yield (app. B, tables B13 and B14 respectively). It is noteworthy that in the former trial the entry, ILC 237, yielded 10% less than

TABLE 4.6 SEED YIELD (kg/ha) AND FUSARIUM RATINGS (FR) OF SUPERIOR ENTRIES IN THE PYT-1, PYT-2 AND AYT-1 AT BEJA IN 1982/83.

· . ·	· · · · · · · · · · · · · · · · · · ·		Trial					•
PYT-1			PY	YT-2		A)	T-1	
Entry	FR	Кд/На	Entry	FR	Kg/Ha	Entry	FR	Kg/Ha
PL Se.Be. 81-40	1.3	1620	TV P- C- 04 (0					
-41	1.7	<u>1620</u> 1390	PL.Be.Se. 81- 48	1.0 1.5	<u>1680</u> 1610	PL.Se.Be. 81-22	1.0 1.3	1410 1260
-28	2.0	1384	-146	1.0	1580	-11	1.0	1243
-27	2.3	1343	-144	1.5	1560	-5	1.3	1221
ILC 2208	2.3	<u>1234</u>	- 78	1.0	<u>1550</u>	-6	1.0	1193
Tunisian Local Check	8.7	16		8.5	49		8.0	49
S.E.		117.2		0.40	123.9			91.5
d.f.		26		-30	30			30

the mean of the local checks, whereas in the IYT, grown on wilt infested land at the same location, it yielded 246 % more than the check (table 4.4). Although the F₄ populations gave a similar seed yield to the check, reselection within them could produce further increases.

4.2.3 Miscellaneous Trials.

As a start to improving the mechanical harvesting attributes a range of all types from ICARDA were grown in a trial at Béja. The seed yield of the entries (app. B, table B15), did not differ significantly and only two genotypes, namely, FLIP 82-85 and FLIP 82-86 outyielded the check, ILC 482, which is a standard ICARDA check. In the longer term it is expected that the best adapted tall types will be involved in a crossing program to increase the height of the local cultivar.

Since virus induced stunt has often been observed in Tunisia, a selection of resistant genotypes from ICRISAT was grown in a trial at Béja. Unfortunately insufficient virus infection occured to rate the entries for resistance and only their seed yield is given in appendix B, table B16.

4.2.4 International Screening Nursery (ISN), ex-ICARDA.

In both this and last season's report, the effectiveness of one row non-replicated plots used in the ISN's to accurately identify superior yielding genotypes has been questioned. An attempt was made this season to improve on such identification by growing two sets of the ISN at each test location; in a sense each ISN was therefore replicated twice, although the same randomisation was used for all sets.

The seed yield results from the two sets grown at both Béja and El-Kef are given in appendix B, table \$17. Also included in the table are the coefficient of variation for the check entries, and these varied widely from 7.0% to 51.0%.

At Béja the results were relatively consistent in that the correlation between the seed yield of the entries in each set was 0.81 (P \leq 0.001, df = 66), and of the 69 entries 27 exceeded the mean of the local check in both sets. Whereas at El-Kef, although 44 entries exceeded the mean of the local check in one set, none did in the other, and the corresponding correlation was - 0.002 (P \leq 0.10, df = 64).

Such conflicting results provide little evidence for or against the effectiveness of these ISNs in assessing seed yield, and only further testing in replicated trials will provide an answer.

4.2.5 Fusarium Disease Nurseries.

Mention has already been made above about the performance of entries that were selected for Fusarium wilt resistance within the local landrace 'Amdoun' at Béja. A further series of resistant single plant selections were made in 'Amdoun' at this location in 1982, and the progeny seed from a 126 of these was grown in the wilt sickplot (WSP) at Béja for further testing.

Unfortunately owing to some errors in planting only 49 of these could be clearly identified with their original parents. However, all maintained their resistance (a rating of less than 3 on the 1 to 9 scale) and those with sufficient seed will be tested in a replicated yield trial next season. Many of the remaining progenies in the nursery showed resistance and after reclassification those with sufficient will also be included in the trial.

It is possible that the sources of resistance so far identified in 'Amdoun' are the same or a similar genetic mechanism. In an attempt to widen the genetic base for resistance firstly, another series of single plant selections for resistance were made within a farmer's field infected with Fusarium wilt at a different location, namely, Mateur, and the progeny from these will be grown in the WSP at Béja next season.

Secondly, an international root rots/wilt nursery from ICRISAT, containing 75 desi entries was grown in the WSP at Beja, and the seed yield results are given in appendix B, table B18. entry showed symptoms of Fusarium wilt infection. and this included the desi check which is highly susceptible to indigenous races of wilt in the Indian sub-continent. The latter suggests that the strain of the pathogen occuring naturally in Tunisia is less virulent than that in the sub-continent, and that these resistant desi entries could provide an additional and perhaps different source(s) of resistance to those so far located in the Tunisian land race. Next season crosses will be initiated between local cultivars and some of the desi entries.

4.2.6 General Discussion.

The local cultivar Amdoun is widely cultivated, but the demonstration of its extreme

susceptibility to Fusarium wilt in the WSP at
Béja marks a major deficiency in this cultivar.

It was therefore encouraging that selections
from within Amdoun, and other genetic material
derived from ICARDA and ICRISAT, showed a high
level of resistance to Fusarium wilt, and some
of these genotypes have maintained this level
for more than one season. Amdoun is also susceptible, however, to Ascochyta blight which occurs
regularly, and thus any new cultivar that might
be considered for release must possess resistance
to both pathogens. Accordingly crosses are being
undertaken next season with the aim of obtaining
a range of genotypes combining both types of
resistance.

Most of the significant yield improvements obtained over the local check Amdoun stemmed from improved resistance to Fusarium wilt, and whilst such resistance is of great value, efforts must also be continued to improve seed yield per se. However, although some trials had relatively high coefficients of variation for seed yield, little of the genetic material contained in ICARDA international yield trials appeared to possess an inherent and consistent yield advantage over the local check. Therefore, as with faba beans, it may be necessary to consider putting greater emphasis on the testing of early generation breeding lines and populations from the ICARDA base program, prior to their selection for inclusion in international trials.

APPENDIX B. RESULTS OF THE CHICKPEA BREEDING TRIALS AND NURSERIES IN 1982/83.

Abbreviations used in tables.

1. Locations: B - Béja

K - E1-Kef

Ma- Mateur

Mo-Moghrane

 Data: Kg/ha - seed yield of entries in these units.

\$Lc - seed yield of entries expressed
as a percentage of the Tunisian
Local Check.

Data - those underlined were signifivalues cantly (P \leq 0.05) superior to the Tunisian Local Check.

ND - data not available.

3. Statistics: C.V. % - coefficient of variation expressed as a percentage.

S.E. - standard error of entry mean.

d.f. - degrees of freedom associated with the standard error.

TABLE B1 SEED YIELD OF ENTRIES IN A WINTER SOWN IYT AT TWO LOCATIONS IN 1982/83.

		В		K	
Entry	Pedigree	Kg/Ha	ZLc	Kg/Ha	7Lc
ILC 195		1965	115	2133	136
202	VYR 32	1725	101	2110	135
482	Acc. N° 26780-68	1850	108	2506	160
484	Acc. N° 26780-68	2215	129	2199	141
3279	-	1735	101	1995	128
FLIP- 26W	X78TH23/ILC262xILC183	1993	116	1968	126
34W	X79TH29/ILC 51xILC200	1673	98	1990	127
41W	X79TH50/ILC591xILC200	2253	132	2048	131
56W	X79TH151/ILC72xILC897	2203	129	2365	151
57W	X79TH151/ILC72xILC897	1855	108	1910	122
59W	X79TH158/ILC202xILC893	1915	118	2018	129
	Tunisian Local Check	1713	100	1563	100
Mean		1924	•	2067	
C.V. Z		20.3	•	20.1	
S.E.		195.0		207.8	
d.f.		33		30	
d.f.		33		30	

TABLE B2 SEED YIELD OF ENTRIES IN A WINTER SOWN ${\bf f}_3$ POPULATION TRIAL N°1 AT TWO LOCATIONS IN 1982/83.

		В		K	
Entry	Pedigree	Kg/Ha	7Lc	Kg/Ha	ኧ፣ ^
X 81 TH 53	ILC 1920 x ILC 2506	763	161	1729	124
56	1920 x 3279	938	197	2038	146
84	191 × 262	338	71	1807	130
85	191 x 237	520	109	1888	136
101	72 x 191	338	71	1867	134
104	72 x 482	525	110	1957	141
105	72 x 484	438	92	2302	166
111	191 x 202	850	179	1959	141
112	191 x 482	788	166	1990	143
113	191 x 484	650	137	2082	150
120	200 x 484	938	197	1975	142
125	202 x 482	453	95	2107	151
126	202 x 484	763	161	1929	139
146	72 x 73	538	113	2250	162
ILC 482	Acc. N° 26780-68	650	137	2261	162
	Tunisian Local Check	475	100	1392	100
Mean		632		1971	
C.V. X		47.7		14.0	
S.E.		213.3		159.1	
1.f.		13 ⁴		30	

a - Third replicate used for single plant selections.

TABLE B3 SEED YIELD OF ENTRIES IN A WINTER SOWN ${\bf F_3}$ POPULATION N°2 TRIAL AT TWO LOCATIONS IN 1982/83.

				B	i	K	
Entr	у	Pedigr ee		Kg/Ha	%Lc	Kg/Ha	ZL c
x 81 T	н 29	ILC 610 x I	LC 202	1550	132	1859	149
	41	1920 x	72	1013	86	1921	154
	48	1920 x	201	<u> 1763</u>	150	1454	157
	49	1920 x	202	638	54	1917	154
	55	1920 x	2956	950	81	<u>1837</u>	147
	108	72 x	262	95 Q	81	2104	169
	109	72 x	493	1168	99	<u> 1840</u>	148
	116	191 x	262	1113	95	1946	156
	117	191 x	493	N D		<u>1850</u>	148
	123	200 x	262	1288	110	1796	144
	130	202 x	493	575	49	2242	180
	171	92 x	191	1563	133	1563	125
	190	272 x	191	1075	91	<u> 2025</u>	163
	203	3279 x	3355	1200	102	<u>2111</u>	169
ILC	482	Acc.N* 26780	-68	1150	98	2129	171
Tunisi	an Loca	1 Check		1175	100	1246	100
Mean				1145		1896	
c.v. z				23,3		14.9	
S.E.				188.3		162.8	
d.f.				13 ^a		28	

a - Third replicate used for single plant selections

TABLE 84 SEED YIELD OF ENTRIES IN A WINTER SOWN PYT AT BEJA IN 1982/83.

Entry	Kg/Ha
LC 3279	1350
LIP 81004	2041
81078	1866
8 1070	1958
81084	2000
8 1064	1632
81080	1316
an	1734
v. z	10.2
E.	124.5
f.	6

TABLE B5 SEED YIELD OF ENTRIES IN A WINTER SOWN AYT AT TWO LOCATIONS IN 1982/83.

	B			K
Entry	Kg/Ha	Z Ic	Kg/Ha	ZLc
ILC 72	1590	85	913	71
182	1520	81	1110	66
191	1540	82	873	68
194	1570	84	1088	85
195	1530	81	1085	84
200	1560	83	998	78
202	1340	71	735	57
482	1570	84	1505	117
484	1800	96	1300	101
2548	1560	83	998	78
2912	1180	63	1023	80
Tunisian Local Check	1880	100	1285	100
Tunisian Local Treated	2000	106	1535	119
Hean	1589		1110	
C.V. Z	17.1		23.5	
S.E.	136.2		130.6	
i.f.	36		36	

TABLE B6 SEED YIELD OF ENTRIES IN AN ASCOCHYTA BLIGHT SCREENING NURSERY AT THREE LOCATIONS IN 1982/83.

Entry			B Kg/Ha	K Kg/Ha	Mo Kg/Ha
ILC	72		225	2337	600
	32		775	1975	825
	33		1575	2250	850
10	37		1200	2100	800
19			1325	1700	1025
19)5		1450	2750	750
19)6		950	1250	500
20	00		950	2000	550
20)1		825	2200	825
20)2		1200	1275	700
21	5		1225	1950	625
24	9		1800	1725	1075
48	12		: 1375	1450	1125
48	34		1425	1937	1175
238	10	.**	1075	1562	700
250	16		1450	2350	450
295	6	3.1	:1000	2250	525
327	4	ě.	975	2375	475
327	9		1500	2250	500
334	6	Α.	1250	2650	650
340	0	, .	1150	1950	500
LIP 81-41	W		1775	2800	875
-56	W		1025	2450	1125
-59	•		1400	2437	675
LIP 81-67		¥.	1225	1750	1000
-75			1200	2600	1200
-26	9		1525	1812	1175
-29	_		1412	2087	1000
-34	_	•	925	2562	875
CC 641			1200	.75	850
2160	1		1225	1850	550
3932		* 2 *	812	1475	600
3996			800	1837	425
4107			825	1587	650
4472			750	1175	425
4475			712	1375	600
4935			675	1512	950
5127			1625	2725	475
6262			800	2462	325
6304			1275	1750	450
6306	ı		1512	2012	550
6945			625	1525	425
6981			1250	1775	300
6988	i		1150	1500	450
6989			875	1625	475
EC 138-2			1350	2887	650
G 688			958	1775	550
ch 15			1350	2325	450
ch 128			1350	50	475

. . . /

TABLE B6 (continued)

Entry	В Кg/На	K Kg/Ha	Мо Кg/На
HECK GENOTYPE			
unisian Local Check	912	2025	675
	962	1750	550
	950	1600	500
	1075	1400	700
	1050	1412	775
	2400	1275	800
•	1900	1625	650
	1475	1550	800
	1875	1462	775
	625	1525	525
	1600	1750	450
	1450	1525	600
	1000	1537	600
	1325	1025	775
	1000	1475	650
	750	1925	600
	1475	1650	1200
	1575	1375	875
	1650	1750	725
	1325	1300	700
	1850	1550	725
	1600	1825	450
	1575	1850	475
	1300	1450	800
	1600	1800	850
	1225	1200	700
	1000	1062	575
n of Check	1352	1543	685

TABLE B7 SEED YIELD OF ENTRIES IN A NATIONAL SCREENING NURSERY GROWN IN WINTER AND SPRING AT E1-KEF IN 1982/83.

intry	Winter Kg/Ha	Spring Kg/Ha
159 109	800	1300
115 789	1250	700
59 614	2100	1400
97 263	2300	300
15 811	ND	600
15 787	2350	1300
59 365	1100	1000
12 893	2450	1400
60 050	200	800
59 240	1100	1000
59 123	950	400
97 257	1500	1300
88 313	2700	900
59 049	1950	1100
60 036	2200	1000
15 782	50	100
69 881	1000	1200
51 024	2350	1300
20 776	2100	1100
43 019	1400	1100
	1650	1100
03 142	1800	1000
54 550	2000	800
50 143	1300	1000
11 722	1800	800
43 016	1700	1200
73 VIO 22 770	2050	900
53 227	1200	500
15 786	1700	1000
60 224	2400	900
12 891	2100	1100
15 816	1800	400
50 221	2700	800
71 325	800	700
57 648	1000	900
59 552	200	700
43 014	1350	800
misian Local Check	2300	400
	1600	1000
	1550	1500
	950	2100
	1300	1300
	2300	1100
	2500	700
an of Check	1786	1157
the Ar alleen		

SEED YIELD OF ENTRIES IN AN ITT AT THREE LOCATIONS AND FUSARIUM RATINGS (FR) AT BEJA IN 1982/83. TABLE B8

1	ä	118	011	5	127	101	5 0	Š	==	ā	<u>6</u>	5	1 07	===	91	115	\$	ş	102	123	115	107	120	97	8				
¥.	Kg/Ha	1638	1531	1431	1756	1400	1463	1506	1588	1431	1519	1425	1484	1544	1263	1600	1450	1444	1420	1713	1600	1479	1669	1344	1388	1503	16.5	124.2	. 19
	žĮć	92	92	46		8	76	Ş	98	95	78	98	z	57	ş	2	36	93	8.	82	97	88	93	86	100				
M	Kg/Ha	1438	1438	14.56	1575	1263	1206	1613	1331	1881	1219	1325	1456	888	1619	1088	1338	1444	1268	1281	1488	1369	1444	1519	1556	1380	24.5	169.0	99
	11°	240	176		346	96	174	84	140	272	145	210	25	116	07	236	128	222	22	9	285	395	167	386	001				
4	Kg/Ha	1006	238	4=	1450	394	731	l S	588	1138	909	881	<u>5</u>	485	168	988	538	931	8	25	1194	1656	8	1619	419	701	26.5	92.7	29
	# %	8.4		900	1.5	13	E. 2	3.	4.5	3.8	8.4	5.3	7.3	0.9	5.5	4.3	5.8	8.4	8.0	9.0	0,4	3.5	<u>د.'</u>	3.2	2: 0	5.3	11.7	0.31	69
	Pedigree				Coll. N. K. 2187	P1 339223	12-071-02122	Acc. Nº 26595-68	26715-68	28119-69	Calibre 21/28 S.R*6	Syrian Local	7445-B-2H-LB-1p-BH	NEC 1487 x G 543		1656 xB100	1605 x Ceylon 2	14 x NEC 132	10 x P 4307	10 x P 4307	1540 x P 1630	219 x F 61		741300-4P-4P	Tunisian Local Check				
	Entry	7 71		3 36	237	263	295	464	480	667	610	1929	PLIP 80-1		'n	81-31	32	40	45	94	25	ž	63	65		Mean	C.V. X	S.E.	d.f.

TABLE B9 SEED YIELD OF ENTRIES IN AN IYT-L AT THREE LOCATIONS AND FUSARIUM RATINGS (FR) AT BEJA IN 1982/83.

and the second second		R.	`	к	
Entry	F.R.	Kg/Ha	ZLe	Kg/Ha	ZLo
ILC 35	6.0	406	103	1438	9:
76	4.5	288	73	1106	93
83	4.5	500	127	1044	87
112	5.0	325	82	1363	114
116	4.5	413	105	1163	97
132	4.0	388	98	950	80
134	3.5	481	122	1075	90
135	4.0	356	90	838	70
136	2.0	1000	254	1194	100
165	4.0	606	154	1050	88
171	4.5	494	125	1000	84
254	6.0	131	33	1363	114
451	4.5	650	165	1088	91
464	5.5	313	79	1125	94
496	6.0	181	46	1038	87
613	. 5:5	386	98	1100	92
620	5.5	313	79	1163	97
629	5.5	156	40	1163	97
2587	4.0	694	176	1106	93
Tunisian Local Check	5.0	394	100	1194	100
Mean .	4.7	424		1113	, e
c.v. %	14.3	53.3		19.2	
5. E.	0.58	113.0		106.7	
1.f.	56	56		57	

TABLE B10 SEED YIELD AND FUSARIUM RATING (FR) OF ENTRIES IN AN PYT N° 1 AT TWO LOCATIONS IN 1982/83.

		В	Ķ.
Entry	F.R.	Kg/Ha	Kg/Ha
LC 29	7.3	166	920
ILC 2208	2.3	<u>1234</u>	743
LIP 80~14	2.7	1171	887
-35	3.3	<u>1116</u>	800
-54	4.7	740 228	1000
-62	6.7		757
-65	5.0	<u> 200</u>	880
LC 480	8.7	27	1067
L.Se.Be. 81-25 -27	5.4	<u>677</u>	890
-27 -28	2.3	1 <u>343</u>	877
-40	2.0 1.3	<u>1384</u> 1 <u>62</u> 0	767
-41	1.7		900
• •	1.7	1390	733
misian Local Check	8.7	16	900
ean	4.4	859	866
.v. x		23.6	25.2
.E.		117.2	126.1
.f.		26	26

TABLE B11 SEED YIELD, FUSARIUM RATING (FR) AND 100 SEED WEIGHT OF ENTRIES IN AN PYT N°2 AT BEJA AND SEED YIELD AT EL-KEF IN 1982/83.

		ъ. В		ĸ
Entry	F.R.	Kg/Ha	100 Seed Weight (g.)	Kg/Ha
PL.Se.Be. 81-48	1.0	1680	54.4	970
-78	1.0 1.0 1.0	1550	49.5	1250
-86	<u>1.0</u>	1440	51.7	1050
-87	1.0	1360	51.0	1200
-103	1.0 1.5 1.0	1490	52.1	950
-108	1.5	1220	53.9	1065
-116	1.0	1480	52,6	820
-120	1.5 1.5	1420	53.8	1580
-126	1.5	1360	51.5	1000
-128	2.0	1200	50.7	1300
- 144	1.5	1560	49.3	1120
-146	<u>1.0</u>	1580	53.4	1015
-149	1.5	1610	52.0	965
Punisian Local Check	8.5	49	43.8	1015
FLIP 80-51	5.0	390	24.1	900
FLIP 80-30	5.0	130	23.1	1090
tean	2.2	1120		1080
c.v. z	24.9	14.4		30.
S.E.	0.40	123.9	÷	230.
i.f.	30	30		14

TABLE B12 SEED YIELD AND FUSARIUM RATING (FR) OF ENTRIES IN AN AYT N°1 AT BEJA AND SEED YIELD AT BL-KEF IN 1982/83.

1.7 1.3 1.0 1.3 1.3 1.3 1.0 5.0	638 1221 1123 1171 1260 1110 1243 716	1423 1290 1370 1723 1490 1057 1413
1.3 1.0 1.3 1.3 1.3 1.0 5.0	1221 1193 1171 1260 1110 1243 716	1290 1370 1723 1490 1057 1413
1.0 1.3 1.3 1.3 1.0 5.0	1221 1193 1171 1260 1110 1243 716	1370 1723 1490 1057 1413
1.3 1.3 1.3 1.0 5.0	1171 1260 1110 1243 716	1723 1490 1057 1413
1.3 1.3 1.0 5.0 4.7	1260 1110 1243 716	1490 1057 1413
1.3 1.0 5.0 4.7	1110 1243 716	1057 1413
1.0 5.0 4.7	1 <u>243</u> 716	1413
5.0 4.7	716	
4.7		1460
	4//	1400
	<u>766</u>	1490
	<u>1410</u>	1250
	• •	1377
		1357
		1110
		1177
7.7	49	997
8.0	49	1500
	694	1343
	22.9	21.6
	91.5	167, 0
	30	31
	1.0 7.0 6.0 7.0 9.0 7.7 8.0	1.0 1410 7.0 77 6.0 116 7.0 71 9.0 0 7.7 49 8.0 49 694 22.9 91.5

TABLE B13 SEED YIELD OF ENTRIES IN AN AYT N°2 AT TWO LOCATIONS IN 1982/83.

	В	•	K	
Entry	Kg/Ha	ZLc	Kg/Ha	Z Lc
ILC 35	1399	90	860	99
83	1112	71	823	95
116	1612	103	890	103
132	1025	66	835	97
134	1388	89	810	94
136	1571	101	1093	126
237	1404	90	955	110
262	1372	88	678	78
451	1414	91	985	114
493 1102	1604 1688	103 108	893	103 123
TL 82 Q Meliz TL 82 Sfax TL 82 M. Desi TL 82 M. Lisse TL Amdoun Béja TL Se Béja 3	1595 1658 1672 1381 1635 1430	100	1065 758 933 805 753 1183 760	100
lean .	1478		887	
.v. z	24.3		27.1	
.e.	179.8		120.4	
l.f.	48		48	

TABLE B14 SEED YIELD OF ENTRIES IN AN F₄ POPULATION TRIAL AT BEJA IN 1982/83.

Entry	Kg/Ha	7Lc
80 TH 63	1630	95
116	1970	115
136	1810	106
137 207	1917 1787	112 104
Tunisian Local Check 1 Tunisian Local Check 2	1810	100
Mean	1792	
c.v. z	9.1	•
S.E.	94.0	
d.f.	10	

TABLE B15 SEED YIELD OF ENTRIES IN A TALL TYPES TRIAL AT BEJA IN 1982/83.

Ent	ry	Kg/Ha	ZL c
ILC	72	550	46
	197	175	15
	198	328	27
	202	375	31
	2956	233	19
	3279	575	48
FLIP 8		512	43
	78	367	31
	79	637	53
	80	1133	95
	82	617	52
	83	867	72
	84	975	82
	85	1342	112
	86	1317	110
	91 .	675	56
	92	1133	95
	93	1000	84
Check	(ILC 482)	1342	•
		1275	100
:	2 3	1033	100
•	4	1133 }	
lean.		800	
.v. z		55.9	
S.E.		258.1	
ı.f.		42	

TABLE 816 SEED YIELD OF ENTRIES IN A STUNT NURSERY AT BEJA IN 1982/83.

Entry	Kg/Ha
ICC 6433	112
6934	75
591	650
2385	37
3127	1200
685	1350
10495	150
3718	143
4949	. 37
403	1275
10596	87
HECK GENOTYPE ICC 11322	750
	825
	1225
	1193
	1500
	1325
	875

TABLE B17 SEED YIELD OF ENTRIES IN TWO SETS OF AN ISN AT TWO LOCATIONS IN 1982/83.

		B		K	
Entry	Pedigree	Kg/	Ha	Kg/	Ha
· · ·			Set 2	Set 1	Set 2
PLIP 81 -33	NEC 1605 x Ceylon 2	550	1350	ND	950
34	" 1540 x E 100	350	900	1425	700
35	" 1540 x B 100	375	650	1350	1300
36	" 1646 x P 4307	350	500	1400	1000
• 37	" 1487 x P 4307	150	400	1475	1000
38	" 14 x NEC 1218	400	450	1425	725
39	" 14 x " 1415	300	550	1275	650
41	" 14 x "" 132	³ 400	250	975	900
42	" 14 x " 139	550	500	1275	1800
43	" 30 x " 139	150	250	3350	650
44	IC 75 1269-12	750	1550	1300	650
47	NEC 10 x P 4307	500	700	1500	1600
48	" 2398 x P 4307	300	500	1150	650
49	" 1614 x NEC 316	1550	1100	1275	1575
50	" 1605 x L 534	1050	1500	1200	1475
51	" 2814 x NEC 317	1075	1200	1400	1050
53	" 1540 x P 4307	1300	2100	1300	1650
55	" 1605 x CP 66	1600	2200	1650	1175
56	" 1487 x P 4307	1050	1600	1200	1450
57	" 293 x NEC 139	1700	2000	1450	1275
58	" 1646 x L 2	975	2050	1300	1475
59	" 1487 x P 4307	1300	1950	1350	1000
60	" 293 x NEC 139	1050	1850	1575	100C
61	" 2614 x " 317	1350	2400	1450	1650
62	(NEC 143xL 550) x (V4xP472)	1200	1950	1200	900
64	NEC 14 x NEC 132	2025		1500	950
14W	ILC 1929 x ILC 200	1350	2200 1500	1450	950
23W	630 x 200	1650	1600	1350	600
	262 x 183	1500		1375	850
27W	+-		1800		950
63W	51 x 200	1400	2200	1650	
67	1920 x 195	950	1100	700 975	1000 1250
75	202 x 893	1375	160C		
93	625 x 74TA1629	2450	2250	1625	400
95	625 x 74TA1629	1950	2350	1375	1700 ND
96	625 x 74TA1629	1900	1850	1350	1225
97	896 x 74TA2162	1825	2050	1800	
119	7347-6-4-B-BHxICCC3	1150	1850	1150 1200	1000 650
130	x 75TA53 x 74TA3278	1900	2200	1450	850
131	× 75TA53 × 74TA3278	1650	2000		1000
146	× 75TA16991 × 74TA3278	1300	1900	1100	1050
149	x 75TA169 x 74TA2972	1600	1900	1250 1750	575
156	× 75TA33 × (74TA3278) (75TA16988)		2050	1600	1175
158		1875	1950	1000	11/2

TABLE B17 (continued)

				B	K	
Entry	,	Pedigree	Kg	/Ha	Kg/	1150 1505 1050 1400 1650 1750 1750 1750 1660 1750 1660 1750 1750 1600 1650 900 700 875 1000 875 650
			Set 1	Set 2	Set 1	Set 2
FLIP-81	176	ILC 896 x 74 TA 2162	1650	1800	1400	1150
	177	11	1125	1700	1400	1525
	178	ILC 23 x 74 TA 1629	1500	2000	1200	1050
	179	NEC 2380 x (NEC 1540xP 4307)	1450	2250	1150	1400
	180	GL 629 x B - 110	1800	220C	1650	1600
	181	NEC 2332 x (NEC 1646 x L 2)	1625	2200	1550	1200
	183	ILC 896 x 74 TA 2162	1600	160C	1250	1650
	187	ILC 196 x ILC 19	1950	1750	1250	1050
	198	NEC 2380 x (NEC 1540 x P 4307)	1850	1650	1450	1750
	204	P 9800 x JM 842	755	900	550	1500
	208	7347-6-4-B-BH x ICCC 3	2075	2250	1600	675
	218	x 75 TA 44 x 74 TA 22	2000	2200	1450	1100
	225	x 75 TA 55 x NEC 108	1450	2250	1800	1600
	229	x 74 TA 3272 x 74 TA 2972	1850	1850	1650	
	230	x 74 TA 3272 x 74 TA 2972	1275	1750	1200	
	251	x 75 TA 16029 x Giza 1	2100	1950	1500	
	252	н	1850	2050	1525	
	253	II .	2275	2300	1325	
	254	11	2075	2450	1400	850
	269	ILC 72 x ILC 1922		2000	1550	1050
	293	ILC 191 x ILC 496	1525	2050	700	1000
	343	ILC 72 x ILC 897	1950	1400	1250	875
	391	NEC 1540 x H 223	1925	2250	1250	650
	392	NEC 14 x NEC 139	2125	1900	1300	850
	395	IC 751819-1P-5P	1125	1600	1150	550
HECK GE	NOTYPES					
LC	480		650	750	1100	1200
			1200	1800	1175	1475
			1775	1700	1150	800
			1450	2350	1000	1250
ean			1269	1650	1106	1181
.v. z			37.4	40.3	7.0	23.8
LC	1929		825	700	1625	800
			2100	2250	1700	1525
			1800	2150	1150	900
ean			1575	1700	1492	1072
v. x			42.3	51, 1	20.0	36.6

TABLE 817 (continued)

Entry Pedigree CHECK GENOTYPE Tunisian Local	Set 1	/Ha	Kg Set 1	/Ha Set 2
CHECK GENOTYPE	700			·
CHECK GENOTYPE		800	1700	1400
- The Control of August Aug - August Aug		800	1700	1400
Tunisian Local		800	1700	1400
1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1987年,1		1850	1475	750
	1800 1650	1550	3100	850
	1675	2050	1300	800
Mean	1456	1563	1894	950
c.v. x	34.9	35.1	43.3	31.9

TABLE B18 SEED YIELD OF ENTRIES IN AN ICRISAT INTERNATIONAL ROOT ROTS/WILT NURSERY AT BEJA IN 1982/83.

Entry	Kg/Ha	Entry	Kg/Ha
CC-537	560	ICC-6440	880
858	1200	6488	1440
1338	1440	6501	960
1376	880	6668	1160
2664	1120	6687	440
2883	1280	6772	580
3354	160	6815	1040
3415	640	6817	1520
3428	1160	7489	1400
3528	1160	8166	1160
3782	880	8170	1280
4485	1040	8933	1560
4843	840	8999	1200
5727	1680	9039	1160
6384	1480	9041	1240
9103	680	ICCL-80001	1080
9112	9 60	80002	760
9127	720	80004	1120
10382	1360	80031	640
10384	1560	80035	1040
10399	720	81001	800
10466	840	8 1002	640
10539	920	81004	1320
10630	1080	81005	1000
10809	1360	81006	1000
11088	1800	8 1007	920
11224	80	8 1008	1840
12266	960	8 1009	680
-81010	1220	81249	1200
81011	1080	81250	1320
81012	1200	81251	1200
81013	760	81253	1280
81014	1800	81254	1280
81015	1640	81255	520
81016	960	81256	1280
81017	600	81257	1040
81201	880	81258	1080
Mean of chec	k ICC 4951, repeat	ed 38 times	935
C.V. Z			21

5. LENTIL IMPROVEMENT PROGRAM.

Last season there was a severe attack of Sclerotinia spp. on trials at Béja and a light attack of rust (Uromyces spp.) on trials at El-Kef. This season no pathogens were observed on the trials and again it appeared that the area sown to lentils by the farmers was very small.

The full seed yield results from all trials and nurseries are given in appendix C with a summary of the results contained in the following crop report. The local checks used in the experiments were local cultivars from different regions, and are referred to as either the local check(s) or simply the check.

- 5.1 Results and Discussions.
- 5.1.1 International Yield Trials (IYT), ex-ICARDA.

In a large seed IYT grown at Béja, E1-Kef and Mateur, the entries differed significantly for seed yield only at Béja ($P \le 0.001$) and at Mateur ($P \le 0.05$), where the number of entries significantly exceeding the local check was 20 (all entries) and 14 respectively (app. C, table C1). Across all three locations the five

- 82 -

heaviest yielding entries gave a mean increase of 98% over the check (table 5.1), and interestingly two of these entries, namely, ILL 8 and ILL 193 (78S 26066), each showed a similar yield advantage last season at Béja.

More disappointing were the results from an international F_3 trial at Béja (app. C, table C2), in which the populations, selected for flowering, did not differ significantly for seed yield. It was encouraging, however, to note that the majority of populations exceeded the local check and many did so by a considerable margin.

5.1.2 Advanced (AYT) and Preliminary (PYT) Yield Trials.

In an AYT grown at Béja, El-Kef and Mateur the entries differed significantly for seed yield at all three locations (app. C, table C3). However, only Jordanian Local at Béja and Syrian Local Large at El-Kef significantly outyielded the mean of the four local checks, but not the heaviest yielding check, namely, PL 83 Oueslatia.

A PYT was grown at Béja and El-Kef and at both locations the entry differences for seed yield were significant (P < 0.01), with seven and five entries significantly exceeding the mean of the four local .../

TABLE 5.1 SEED YIELD (Kg/ha) OF SUPERIOR ENTRIES IN AN IYT-L AT BEJA (B). EL-KEF (K) AND MATEUR (Ma) IN 1982/83.

Entry		ני	Location	.		
Designation	Pedigree	æ	×	Ma	Mean	Zrc
ILL 8	78\$ 26002	1449	1363	2917	1910	197
20		1625	1388	2883	1965	202
193	78\$ 26066	1449	1280	3000	1910	197
4523		1400	1483	2917	1933	199
4606	Nablus	1500	1671	2525	1899	196
Tunisian Local Check	Леск	754	1133	1025	971	100
ਲ ਜ		65.5	65.5 138.1	357.8		
d.f.		39	40	37		

checks respectively (app. C, table C4). Four of these entries were common to both locations and their performance is shown in table 5.2. However, only one entry, namely, ILL 346 at Béja, significantly outyielded the heaviest yielding check, which was again PL 83 Queslatia.

5.1.3 International (ISN- ex ICARDA) and National (NSN) Screening Nurseries (non-replicated).

The problem of assessing seed yield in these ISNs has been mentioned in the two previous crop reports, although in the three ISNs reported here the CVs for the repeated checks were generally reasonable. Nevertheless there were encouraging seed yield results from a large seeded ISN (ISN-L) grown at Béja and El-Kef (app. C, table C5), an ISN containing early flowering types (ISN-E) grown at Béja, El-Kef and Mateur (app. C, table C6), and an ISN comprised of tall types (ISN-Ta) grown at Béja and Mateur (app. C, table C7). In table 5.3 is given for each ISN the total number of entries that exceeded the mean of the repeated checks at the individual locations (E) and the number that did so at all test locations (EL). In five out of seven cases more than 50% of the entries exceeded the mean of the repeated local check at a location (E), but more encouraging was the number that did so at all test locations for an individual ISN (EL).

TABLE 5.2 SEED YIELD (kg/ha) OF SUPERIOR ENTRIES IN A PYT AT BEJA(B) AND EL-KEF (K) IN 1982/83.

			Loc	ation		
Entry	,	1.	В	K	Mean	7Lc
ILL 24	1		2311	1249	1780	138
34	6		2400	1371	1886	146
85	7		2166	1443	1805	140
	7		2211	1455	1833	142
Tunisia	-					
PI	. 83	М1	1467	1149		
	83	M2	1581	1066		
	83	Oues- latía	1933	1366	1288	100
	82	Béja	967	771		
S.E.			140.5	103.4		

Table 5.3 Number of entries outyielding the mean of the repeated local check in 3 ISN's.

	Total N°		Location	S	A11
Experiment	entries	Béja (E)	El-Kef	Mateur (E)	Locations (EL)
ISN-L	40	30	40	**	30
ISN-E	62	12	36	25	10
ISN-Ta	60	34	_	42	26

The seed yield results from an NSN, which contained entries from the Pullman Institute (Washington, U.S.A.) and was grown at Béja and El-Kef, are given in appendix C, table C8. The CVs for the repeated local check were again reasonable, and at Béja and El-Kef three and six entries respectively exceeded the mean of the local check, and of these, the two entries 254554 and 299124 did so at both locations.

5.1 General Discussion.

Last season a number of entries in the international yield trials from ICARDA grown at Béja significantly outyielded, and by a considerable margin, the check which was a local cultivar from the Béja region. Encouragingly this season these entries maintained a similar yield advantage over this check in the IYT and

. . . /

AYT, and the results from the two years of testing are given in table 5.4. However, the inclusion of other local cultivars in the AYT and PYT (app. C, tables C3 and C4 respectively) showed that the Béja check was consistently the lightest yielding of such cultivars. Hence it's use in other trials as the sole check has perhaps overestimated the potential yield improvements that can be obtained over the local cultivar(s). Clearly further sampling of the local populations should be undertaken.

In hindsight it was unfortunate that only the Béja check was used in the F₃ population trial (app. C, table C2). Nevertheless the seed yield of some of the populations suggests that they could equal the heavier yielding checks in the AYT and PYT and that reselection may produce further yield improvements. The Béja check was also used in the ISNs, and the use of other cultivars as the check could well have reduced the number of entries exceeding the check shown in table 5.3.

TABLE 5.4 SEED YIELD (kg/ha) OF FIVE ENTRIES OVER TWO YEARS AT BEJA (B) AND EL-KEF (K).

		1981 - 82	82	1982 - 83	83
Entry		മ	×	æ	×
ILL 4354	Jordanian Local	1634	1716	1904	1253
ILL 4400	Syrian Local Large	1774	1334	1796	1350
Tunisian Local Check	eck 1	1061	595	1225	633
-	. 2	1056	655		
S.E.		227.1	139.5	141.5	74.3
d.f.		77	57	27	27
ILL 15		1452		1467	1463
28		1685		1583	1363
262		1683		1562	1304
Tunisian Local Check 1	leck 1	702		754	1133
=	" 2	628			
e H		219.3		65.5	138.1
d.f.		30		39	40

APPENDIX C. RESULTS OF THE LENTIL BREEDING TRIALS AND NURSERIES IN 1982/83.

Abbreviations used in tables.

1. Locations: B - Béja

K - E1-Kef

Ma- Mateur

Mo- Moghrane

2. <u>Data</u>: Kg/ha - seed yield of entries in these units.

%Lc - seed yield of entries expressed
as a percentage of the Tunisian
Local Check.

Data - those underlined were signifivalues cantly (P \leq 0.05) superior to the Tunisian Local Check.

ND - data not available.

3. Statistics: C.V. % - coefficient of variation expressed as a percentage.

S.E. - standard error of entry mean.

d.f. - degrees of freedom associated with the standard error.

TABLE C1 SEED YIELD OF ENTRIES IN AN IYT-L AT THREE LOCATIONS IN 1982/83.

			<u> </u>	X		Ma	
Entry	Pedigree	Kg/Ha	X L c	Kg/Ha	7 L c	Kg/Ha	% L c
ILL 8	78S 26002	1449	192	1363	120	2917	285
15	74TA 9	1467	195	1463	129	2088	204
20	-	1625	216	1388	123	2883	281
28	74TA 19	1583	210	1363	120	2325	227
30	74TA 20	1445	192	1275	113	1850	180
193	785 26054	1504	199	1278	113	2117	207
193	78S 26066	1449	192	1280	113	3000	293
254	74TA 264	1412	187	1246	110	1767	172
262	74TA 276	1562	207	1304	115	2312	226
323	76TA 66136	1129	150	1225	108	1433	140
707	•	1433	190	1600	141	1808	176
841	78S 26181	1341	178	1104	97	2163	211
842	-	1600	212	1483	131	2583	252
851	-	1516	201	1754	155	2225	217
857	-	1479	196	1375	121	1925	188
947	-	1100	146	1317	116	1892	185
4400	Syrian local	1400	186	1446	128	2167	211
4523	-	1400	186	1483	131	2917	285
4605	Precoz	1320	175	1463	129	2100	205
4606	Nablus	1500	199	1671	147	2525	246
-	Tunisian local Check		100	1133	100	1025	100
Mean		1407		1382		2192	
c.v. z		8.1		17.3	,	28.1	
S.E.		65.5		138.1		357.7	
d.f.		39		40		37	

TABLE C2 SEED YIELD OF ENTRIES IN A F₃ POPULATION (EARLY FLOWERING) TRIAL AT BEJA IN 1982/83.

Entry	Pedigree	Kg/Ha	Z Lc
81 S 5	ILL 2501 x 74TA441	1363	182
11	2526 x 74TA138	963	128
12	2526 x 74TA260	1250	167
18	2526 x ILL4400	925	123
19	4353 x 74TA66054	1400	187
20	4353 x 74TA 138	713	95
21	4353 x 74TA260	763	102
22	4353 x 74TA276	1150	153
23	4353 x 74TA441	1050	140
24	4353 x Giza 9	800	107
26	4353 x ILL4354	763	102
27	4353 x ILL4400	1100	147
29	4380 x 74TA138	988	132
56	4404 x 74TA138	675	90
63	4404 x ILL4400	1200	160
65	4405 x 74TA138	1125	150
67	4405 x 74TA276	1300	173
68	4405 x 74TA441	1192	159
69	4405 x Giza 9	1343	179
71	4405 x ILL4354	1140	152
72	4405 x ILL4400	713	95
74	4406 x 74TA138	1350	180
75	4406 x 74TA260	1150	153
76	4406 x 74TA276	1300	173
77	4406 x 74TA441	1388	185
83	4407 x 76TA66054	1150	153
86	4407 x 74TA441	838	112
89	4407 x ILL4354	1038	138
118	2672 x ILL 4400	1075	143
	Tunisian Local Check	750	100
Mean		1065	
C.V. Z		27.8	
6.E. d.f.		209.3 26	

TABLE C3 SEED YIELD OF ENTRIES IN AN AYT AT FOUR LOCATIONS IN 1982/83.

	В		K		Mo	
Entry	Kg/Ha	Z Ic	Kg/Ha	%Lc	Kg/Ha	ZLc
x 74TA138	1609	105	1116	100	667	122
x 74TA264	1542	101	1270	114	575	106
Jordanian local	<u> 1904</u>	124	1253	112	621	114
Lebanese local	1696	111	937	84	450	83
Chilean 78	586	38	762	68	392	72
Syrian local large	1796	117	<u>1350</u>	121	475	87
P.L. 83 M1 Check 1	1571		1133	}	492	
P.L. 83 M2 Check 2	1479	100	1358	100	563 L	100
P.L. B3 Oueslattia Check3	1850	ľ	1337		783	
P.L. 82 Beja Check 4	1225	J	633	J	342 J	
Mean	1555		1115		536	
c.v. 7	18.2		13.3		27.1	
S.E.	141.5		74.3		72.5	
l.f.	27		27		25	

TABLE C4 SEED YIELD OF ENTRIES IN AN PYT AT TWO LOCATIONS IN 1982/83.

			<u> </u>	K	
Entry	Pedigree	Kg/Ha	7 Lc	Kg/Ha	,7 Lc
ILL 837	78526177	1706	115	1282	118
-	79Ter3495	1672	112	1310	120
ILL 241	<u>-</u>	2311	155	1249	115
ILL 346	u e -	2400	161	<u>13</u> 71	126
x 74TA50 -,	78\$13572-2	1805	121	1304	120
ILL 642	78526127	1322	89	1095	101
x75TA49	79Sh4890	<u>2128</u>	143	1304	120
ILL 857	• • • • • • • • • • • • • • • • • • •	2166	146	1443	133
ILL 842	-, · · · · · · · · · · · · · · · · · · ·	1900	128	1377	127
ILL 7	<u> </u>	2211	149	1455	134
ILL 780		1695	114	<u>1554</u>	149
ILL 6	76TA66012	1883	127	1188	_ 109
	[P.L. 83 M1	1467	1	1149	
Tunisian Local	P.L. 83 M2	1581	100	1066	100
Check	P.L. 83 Oueslatia	1933	100	1366	7 100
	P.L. 82 Béja	967	l	771	ì
	* * *				
	$\mathcal{A}_{i} = \{ (i,j) \mid i \in \mathcal{A}_{i} = \{ (i,j) $				
Mean		1822		1268	
c.v. z	.*	13.4		14.2	•
S.E.		140.5		103.4	,
d.f.	•	29		28	

Table C5 SEED YIELD OF ENTRIES IN AN ISN-L AT THREE LOCATIONS IN 1982/83.

Entry	Pedigree	Kg/Ha	Kg/Ha	Ma Kg/Ha
-	ILL 39	1475	1750	1600
-	45	1300	2050	1450
74TA265	254	1450	1500	1150
78526127	642	1050	1350	ND
-	780	ND	1875	ND
•	920	1800	1550	ND
-	2149	1600	1500	1300
Laird	4349	1050	1100	450
Cyprus Local	4368	1250	1550	ND
79Ter 794	4400	1500	1850	ND
80S50507	4400	2300	1500	ND
80Ter52385	4400	2100	1650	ND
80Ter52390	4400	1700	1900	ND
80Ter52424	4400	2325	1300	2200
80Ter52428			1700	ND
BUTEF32428	4400	1700		
	4507	1350	1450	МD
-	4515	1575	1400	ND
	4524	1725	1675	ND
Precoz	4605	1350	1200	ND
Chilean 78	4711	1325	1250	450
80Ter 32004		1500	1500	GK
79Ter 1774	×75TA44	1875	1500	1550
795h 4806	49	1300	1850	1150
795h 4809	49	1675	1500	ND
79S 53247	49	1675	1550	ND
798 59741	49	1500	1650	ND
78S 13621-1	x75TA53	1400	1825	ND
79Ter 3032	×75TA74	2550	1575	1100
80 S 42059	x76TA11	725	1500	ND
80S 42221	26	1600	1800	1850
805 42434	66	925	1550	ND
80S 42541	70	1675	1750	ND
80S 41671	71	1800	1900	1500
BOS 32768	77	175	1850	1900
80S 41560	250	1875	1750	ND
805 41620	259	1675	1700	1800
BOS 41667	271	1950	1625	ND
805 41139	x77TA66	1600	1825	1450
805 34047	x77TA78	2000	1550	ND
80S 34056	x77TA103	1475	1450	ND
CHECK GENOTYPES				
-3-0	ILL 101	1400	1250	ND
		1350	1550	ND
		1600	1500	1400
		1475	1275	1100
lean		1456	1394	ND

		2

	<u>. B</u>	<u>_K_</u>	_Ma
	Kg/Ha	Kg/Ha	Kg/Ha
CHECK GENOTYPES			
ILL 4400	1725	1650	ND
	1800	1625	ND
	1900	1500	1200
	1675	1750	ND
Mean	1775	1631	ND
C.V. %	5.5	6.3	ND
Tunisian Local Check	1365	975	ND
	-1350	700	ND
•	1300	1100	800
*	1450	775	ND
	1200		950
Mean	1333	888	ND
c.v. x	6.9	20.6	ND

TABLE C6 SEED YIELD OF ENTRIES IN AN ISN-E AT THREE LOCATIONS IN 1982/83.

Entry	Pedigree	B Kg/Ha	Kg/Ha	Ma Kg/Ha
76TA66005	ILL 1	1875	1925	2500
78S 26066	193	550	1950	2100
•	203	1650	1850	1350
PI 250155	228	1025	750	700
Giza 9	784	1275	1500	1750
F 130 EL 19	813 1690	1425 1450	1325 1500	1500 1200
EL 19	1701	1200	1350	1300
EL 43	1713	600	1150	1500
EL 70	1735	850	975	1050
EL 76	1741	1500	1150	1800
Silaim	1861	1750	2450	1550
•	1866	1600	1800	1450
L 528 (75)	1983	750	700	1250
80S 44174	X76TA 143	2500	2625	2200
L 1057	ILL 2022	1175	975	1400
L 1327	2069	750	950	700
EL 39	2149 2431	1650 1300	1900 1150	1900 1150
EL 53	2434	1300	975	900
EL 65	ILL 2455	1150	1175	1300
EL 74	2437	1700	1225	1250
EL 83	2439	1475	1525	1600
Pant. L. 538	2500	450	400	450
Pant. L. 406	2501	450	900	400
T-31	2525	950	1200	400
T-36	2526	800	950	450
Pant. L. 639	2573	850	600	750
L-830	2578	850	900	350
L-1278	2580	900	650	150
L-1282	2581	900	925	650
LL-1 LWS-3	2582	1725	700	500
P 257	2590 2768	1850	1875 825	1950
P 943	3278	775 945	1200	650 350
EL 61	3402	1250	1200	1200
EP 3	3416	1350	1550	2000
B-77	3493	800	1000	750
LG 41	3516	800	1025	300
LG 46	3517	800	850	200
LL 37	3601	750	800	350
LL 38	3602	700	725	450
LL 57	ILL 3614	1575	1650	ND
Pant. L-286	4377	825	750	350
S.L.L. 12	4400	2200	1975	1850
162	4402 4403	500 875	850 975	500 259
18-10	4406	425	925	300
Precoz	4605	1750	1800	1050
EL 142	5071	1050	1250	1200
R 186	5425	1050	1350	1100
79 Sh 4867	X75 TA 30	1275	1750	1100
79 Sh 4806	X75 TA 49	1400	1925	ND
80 S 38650	X75 TA 46	1375	1750	1800
41515	X76 TA 249	850	775	1500
41648	271	1350	2150	2600
41649	271	2200	1850	2300

••••

•		B	<u> </u>	<u>Ma</u>
Entry	Pedigree	Кg/На	Kg/Ha	Kg/Ha
41664	271	1250	1925	ND
41672	271	1950	2300	3150
42431	66	1150	1750	1200
42612	71	1900	1625	2050
CHECK GENOTYPE				
IL	L 1744	1350	1450	1250
		550	1075	1100
		1350	1700	1550
		1500	1450	1300
		1450	1550	1050
		1150	1450	1000
Mean		1233	1446	1208
c.v. z		29.2	14.3	16.9
ILL	4354	2225	1900	2350
		2200	2100	1600
	•	1850	2350	1850
		2150	2800	1650
		1950	1900	2050
	•	2475	2075	2050
lean		2158	2188	1925
C.V. 7		10.4	15.7	14.7
Funisian Local	Check	775	850	1300
enestan nocal	Allery	2000	1000	900
	•	1600	1000	1450
		1750	1350	1050
		1725	900	1200
		1225	1325	1250
		1950	1150	1750
lean		1575	1082	1271

TABLE C7 SEED YIELD OF ENTRIES IN AN ISN-T# AT TWO LOCATIONS IN 1982/83.

Patra	Pedigree	B Kg/Ha	<u>Ma</u> Kg/Ha
Entry	regigies	Kg/ na	Ng/na
78S 26002	ILL 6	2150	1600
78S 26003	" 8	1700	1800
78S 26004	" 9	2175	1750
74TA 138	" 101	1500	1250
Giza 9	" 784	1350	750
788 26194	" 922	1300	450
Laird	" 4349	1275	1250
Chilean 78	" 4711	1275	700
-	" 1918	1400	1350
78S 26152	" 793	1300	1150
-	" 468	1700	1100
-	" 986	1200	600
-	" 20	2300	850
-	" 23	1850	1400
-	" 813 " 443	875	600
78S 26052	112	1600	1150
785 26024	43	1900	1150
S.L.L.	4400	1550	1300
- 900 2774/	1233	1825	1350
80S 37764 37768	X75TA 25	1550	1150
37614	X75TA 25 X75TA 45	1050	750 550
38651	X75TA 45 X75TA 46	1400	550
39928	X75TA 85	1950 1875	950 750
41793	X76TA 3	1800	1100
41815	X76TA 3	1250	ND
42188	X76TA 25	1150	700
42671	X75TA 72	1100	1000
42830	X76TA 75	1750	1550
32376	X76TA 9	1350	ND
28124	X76TA 156	1425	950
41139	X76TA 66	1825	1100
34047	X77TA 78	1750	1000
34056	X77TA 103	1050	1150
38004	X75TA 29	1800	1250
41120	X76TA 32	1625	1400
34057	X77TA 103	1550	1000
35146	X77TA 80	750	1150
27597	X75TA 78	1175	95
27603	X75TA 88	800	600
78S 13159-1	X75TA 14	700	650
80S 41727	X76TA 1	1500	550
39750 41784	X76TA 81 X76TA 3	925 1250	1350
42431	X76TA 66	1350	1000 400
44174	X76TA 143	2150	1500
44540	X76TA 186	1000	900
32725	X76TA 76	1250	650
33357	X75TA 179	1500	400
34103	X77TA 33	1375	900
34927	X77TA 67	1050	950
35172	X77TA 80	900	650
35183	X77TA 80	1375	800

(Table C7 continued).

Entry	Pedigree	B Kg/Ha Kg/Ha	Ma Kg/Ha
			
80S 35184	X77TA 80	1100	1200
32623	X76TA 66	1275	550
34273	X77TA 36	1050	1900
34826	X77TA 58	1200	1250
35187	X77TA 80	1450	600
35188	X77TA 80	1650	650
35190	X77TA 80	600	850
CHECK GENOTYP	PES		
ILL 500		1650	1000
		1800	1000
		1650	1250
		1350	800
		1325	600
		1700	1650
Mean		1580	1050
c.v. z		12.4	34.4
ILL 4401		1300	1350
100 4401		1125	750
		1125	850
		1175	1050
		825	750
		1100	850
Mean		1108	933
c.v. 7		14.10	24.8
Tunisian Loca	1 Check	1325	700
		1400	650
		1475	600
		125 0	750
		1300	500
		1200	600
		1475	900
Mean		1346	671
C.V. 7		8.0	19,2

TABLE C8 SEED YIELD OF ENTRIES IN A NATIONAL SCREENING NURSERY GROWN AT TWO LOCATIONS IN 1982/83.

Entry	Béja Kg/Ha	El-Kef Kg/Ha
472020	1/50	1400
172938	1450	2000
178947	1600	1750
185035 193548	1200 1100	1450
207492	1200	1200
209447	2700	1600
209858	2800	1950
211602	1200	1850
212609	350	1300
217949	650	1300
229611	2400	2800
250156	1650	1250
251029	2300	2450
251030	3000	2350
251248	3300	2450
251784	1200	1650
251785	1400	1550
251786	1300	1600
254554	3100	2800
283604	2150	2050
297285	2100	1600
297740	2500	2050
297741	2200	2700
297742	2150	2250
297744	2600	2200
297749	2900	2000
297760	1300	2250
297763	1700	1800
297770	2100	1800
297797	2200	1800
297743	1620	2900
297798	1300	1400
298019	1300	2850
298121	ND	200
298122	1550	2400
298357	1100	16 50
298644	1400	2350
298922	2500	2 250
299116	2600	2300
299117	2900	2300
299144	1600	2100
299150	1400	1150
299252	1350	2150
299343	1100	1850
299369	2500	2100
299124 BI 82-1	3500	2600
PL 82-1	2000	1750
PL 82-2	1700	2200
PL 82-3 PL 82-4	2100	2500
rt 62-4 Mean of Tunisian Local Check	2250 3035	2450 2590
(repeated 10 times)	CCOC	4J7 V
c.v. z	8.8	11.8

6. PERFORMANCE ACROSS LOCATIONS.

In the data presented for the three crops a number of entries did not show a consistant yield performance across locations in relation to the local check. To investigate this further a combined analysis of variance across locations was undertaken on the seed yield of all entries in a number of trials of each crop. The results of these analyses are set out in a simplified form in table 6.1, in which the individual trials analysed are classified by the level of probability (P) attained by the interaction mean square (entry x location).

The results must be treated with some caution as in some cases the error variances did differ significantly between locations. However, on the assumption that an interaction has some practical significance at P < 0.01, the analyses suggest that of the three crops the genotypes of faba beans and lentils are more likely to exhibit a varied seed yield performance across locations than those of chickpeas. Although more such analyses are required in the future the results reinforce the need to ensure adequate multilocation testing of breeding material.

TABLE 6.1 CLASSIFICATION OF TRIALS ACCORDING TO THE PROBABILITY LEVEL OF THE INTERACTION MEAN SQUARE IN AN ANALYSIS OF VARIANCE FOR SEED YIELD ACROSS LOCATIONS.

Probability Level	Faba beans ⁽¹⁾	Chickpeas (2)	Lentils (1)
> 0.10	IYT-L	IYT-W	
	(E)	AYT-W	
	PYT-L-1	IYT-F ₃ -W	
		IYT-S	
< 0.10- > 0.05	IYT-F ₃		IYT-L
	AYT-L		
€ 0.05- > 0.01			
€ 0.01- > 0.001	PYT-L-2		PYT
€ 0.001	IYT-S		AYT
	PYT-S-1		

⁽¹⁾ L/S: Large/small seeded trials, E: early flowering.

For IYT-S Béja location excluded from analysis.

⁽²⁾ W/S: Winter/spring sowing.

7. AGRONOMY TRIALS.

Agronomy trials were conducted to study the response of small and large seeded faba beans, lentils and chickpeas to the following factors:

- a) Date of sowing and
- b) Nitrogen, phosphorus and potassium fertilizer application
- c) Use of different weed control treatments
- d) Fungicidal seed treatment for chickpeas

A brief summary of the results is presented below.

7.1. Date of Planting and Plant Population Trials.

The treatments were highly significant for all crops (Table 7.2 & 7.3).

1. Faba beans

The best dates of sowing appear to be between beginning of November (D_1) and mid-December (D_3) . Yield are highly decreased when planting occured after mid-December (upto 50%). The highest plant population level (P_1) have doubled the yield (Table 7.1).

2. Lentils

Similar remarks can be made for lentils.

Reducing the plant population levels have decreased the yield much more at Beja than at El-Kef and confirm last year results.

Table 7.1. Plant population levels (number of plants/m²) used in the DPPT.

Plant population levels	Faba bean large	Faba bean small	Lentils	Chickpeas
P ₁	12.5	50.0	165.0	31.2
P ₂	8.3	25.0	82.5	20.8
Р ₃	6.2	16.6	54.9	15.62
P ₄	5.0	12.5	41.2	12.5

Table 7.2. Mean yields (kg/ha) of the Date of planting in the DPPT.

Dates	Faba 1a	bean rge	Faba bean small		Lentils		Chi	ckpeas
	Beja	El-Kef	Beja	El-Kef	Beja	El-Kef	Beja	El-Kef
D ₁	1319	2278	1072	2562	1599	1476	1434	761
D ₂	1243	1794	1096	2416	1478	1338	1087	836
D ₃	1275	1679	1030	2060	1517	1380	818	783
D ₄	881	1309	821	1434	994	1139	-	486
D ₅	182	1065	469	1272	904	1049		
CV	16.0	21.9	16.2	25.8	18.8	20.8	22.0	20.3
SE	44.9	103.0	41.9	145.4	69.9	76.8	70.5	23.8

Table 7.3. Mean yield (kg/ha) of the plant population trials in the DPPT.

Plant Population levels	1a	bean rge El-Kef		bean mall El-Kef		ntils El-Kef		kpeas El-Kef
P ₁	1360	2718	1331	2942	2138	1507	1366	785
P ₂	1051	1700	879	2129	1305	1217	1038	687
P 3	75 7	1381	716	1553	973	1343	902	677
P ₄	702	1200	664	1174	847	1079		
CV (%)	16.7 41.9	17.9 75.3	23.7 76.2	18.7 18.5	17.4 57.9	17.6 58.1	23.7 76.2	18.3 18.5

Table 7.4. Weed Control Trial on Faba bean small yield (kg/ha)

Treatments	В	eja	E1-K	ef		Mean yield of the 2 stations	
	Yield	% of T ₂	Yield	% of T2		% of T2	
T ₂ Weedy (check)	13.92	74.95	5.09	35.00	9.50	57.40	
To Weed Free	18.57	100	14.54	100	16.55	100	
T3 Hand weeding twice	16.97	91.38	14.09	96.90	15.33	93.83	
T _d Maloran	13.68	73.66	10.79	74.25	12.23	73.89	
T ₅ Tribunil	15.10	81.31	10.49	72.14	12.79	77.28	
T ₆ Igran	16.01	86.21	10.86	74.69	13.43	81.14	
T ₇ Bladex	14.84	79.91	9.24	63.54	12.04	72.74	
T ₈ Bladex	13.52	72.80	10.04	69.05	11.78	71.17	
T _q Maloran + Kerb	15.45	83.19	10.51	72.28	12.98	78.42	
T ₁₀ Tribunil + Kerb	13.46	72.46	10.71	73.65	12.08	72.99	
T ₁₁ Igran + Kerb	13.50	72.69	11.06	76.06	12.28	74.79	
T ₁₂ Bladex + Kerb	13.59	73.18	10.81	74.34	12.20	73.71	
CV (%)	17.0		16.2				
SE	145.7		87.2				

3. Chickpeas

The earliest dates of planting (D_1, D_2) seem to be the best for Beja while at the El-Kef no difference in yield was observed between D_1 and D_3 . Plant population treatments had no significant effect on yield at El-Kef. Highest density at Beja seem, however, to result in an average increase of around 450 kg/ha in the yield.

7.2. Weed Control Trials.

In general the average yield loss due to weeds is estimated at 50% for all species.

1. Faba beans

Yield decrease due to weeds was 43%. Hand weeding twice at 45 days intervals improved substantially the yield (Table 7.4). Igran and Maloran + Kerb were the most efficient in controlling weeds.

2. Lentils

Yield loss to weeds was about 42% on an average (Table 7.5). Treatments including Kerb gave satisfactory results but Tribunil seems to be phytotoxic

3. Chickpeas

Yield decrease due to weeds was around 47%. Treatments had a highly significant effect at El-Kef but their effect was nonsignificant at Beja (Table 7.6). Bladex and Igran are phytotoxic and Tribunil appears to be efficient against the existing weed species.

Table 7.5. Weed Control Trial on lentils yield (qx/ha)

Treatments	Ве	ja	E1-	El-Kef		vield of locations
	Yield	% of T ₂	Yield	% of T ₂	Yield	
T ₁ Weedy (check)	7.83	74.14	4.57	41.51	6.2	58.21
T ₂ Weed free	10.56	100	10.75	100	10.65	100
T3 Hand weeding twice	10.00	94.69	10.25	95.34	10.12	94.13
T ₄ Maloran	8.90	84.28	6.74	62.69	7.82	73.42
T ₅ Tribunil	8.00	57.75	5.07	47.16	6.53	61.31
T ₆ Gesagard	8.17	77.36	6.63	61.67	7.4	69.48
T ₇ Bladex	7.17	67.89	7.75	72.09	7.46	70.04
T ₈ Bladex	3.30	31.25	7.45	69.30	5.37	69.20
T _q Maloran + Kerb	9.03	85.51	8.13	75.62	8.58	80.56
T ₁₀ Gesagard +Kerb	8.87	83.99	6.53	60.74	7.7	72.30
T ₁₁ Maloran + Kerb	9.93	94.03	7.34	68.27	8.63	81.03
T ₁₂ Bladex + Kerb	8.93	84.56	8.04	74.79	8.48	79.62
CV (%)	14.0		22.0			
SE	61.2		81.8			

Table 7.6.Weed Control Trial on chickpeas yield (qx/ha)

Treatments	Beja		El-Kef		Mean yield of the 2 stations		
	Yield	% of T ₂	Yield	% of T2	Yield	% of T ₂	
T, Weedy (check)	8.89	69.88	3.69	33.66	6.29	53.12	
T ₂ Weed free	12.72	100	10.96	100	11.84	100	
T, Hand weeding twice	11.65	91.58	9.35	85.31	10.5	88.68	
T _A Maloran	8.73	68.63	6.72	61.31	7.72	65.20	
T ₅ Tribunil	10.59	83.25	7.32	66.78	8.95	75.59	
T ₆ Igran	8.36	65.72	5.72	52.18	7.04	59.45	
T ₇ Bladex	9.76	76.72	4.72	43.06	7.24	61.14	
T ₈ Bladex	9.82	77.20	5.22	47.62	7.52	63.51	
T _q Maloran + Kerb	10.19	80.11	5.92	54.01	7.70	67.98	
T ₁₀ Tribunil+ Kerb	9.76	76.72	7.16	65.32	8.41	71.45	
T ₁₁ Igran + Kerb	9.66	75.94	7.45	67.97	8.55	71.21	
T ₁₂ Bladex + Kerb	9.52	74.84	5.96	54.37	7.74	65.37	
CV (%)	22.0		22.5		****		
SE	109.6		75.3				

Table 7.7.Fertilization and inoculation trial No.1 on chickpea , mean yield (qx/ha)

Treatments	Beja	El-Kef	
0 check	12.96	7.80	
N	11.69	7.46	
K.	13.20	10.28	
Ī	13.29	9.85	
I + K	12.18	9.71	
I + N	13.03	9.24	
I + N + K	12.99	10.17	
N + K	12.75	10.18	
CV (%)	12.2	31.0	
SE	38.5	72.1	

7.3. Fertilization and Inoculation Trials.

Chickpea was the only crop concerned with this type of trial. It was condacted at Beja and El-Kef. No significant effect of the treatments used was observed, although the application of Potassium improved slightly the yield at both stations (Table 7.7). Local Rhizobia strains appear to be effective as introduced strains in fixing nitrogen in chickpeas.

7.4. Fungicide Seed Dressings.

A chickpea seed dressing trial was conducted in the field (Beja) and in the laboratory (Tunis). No significant effect on yield was observed for the different treatments used (Table 7.8). In the field

Table 7.7. Weed Control Trial on Peas at Beja, yield (qx/ha)

Treatments	Yield	% of T ₂
T ₁ Weedy (check)	23.02	90.41
T ₂ Weed free	25.46	100
T ₃ Hand weeding twice	24.96	98.03
T ₄ Maloran	20.16	76.18
T ₅ Tribunil	17.42	68.42
T ₆ Igran	23.72	93.16
T ₇ Bladex	18.42	72.34
T ₈ Bladex	21.21	83.30
T ₉ Maloran + Kerb	21.16	83.11
T ₁₀ Tribunil + Kerb	23.09	90.69
T ₁₁ Igran + Kerb	22.46	88.21
T ₁₂ Bladex + Kerb	19.71	77.41
CV (%)	18.7	
SE	205.6	

Table 7.8. Fungicide seed dressing trial on chickpeas % of germination and yield (qx/ha)

Products	Rate/	% of	Yield	
	kg	germination	(qx/ha)	
Maneb	lg	78.51	12.82	
II	3g	80.95	13.16	
II	6g	78.56	11.90	
Benlate	lg	77.38	14.49	
H	3g	74.00	13.32	
	6g	73.80	11.90	
Peltact	1g	74.99	14.82	
II	3g	77.37	13.57	
u	6g	74.99	12.66	
Maneb + Peltact	1.5g+ 1.5g	79.76	14.10	
Maneb + Benlate	1.5g+ 1.5g	74.99	11.82	
Benlate + Peltac	t 1.5g+ 1.5g	73.80	13.49	
Calixin M	lạ	73.80	11.99	
11	3 g	76.19	14.57	
u	6g	77.12	13.82	
Temoin		77.38	12.16	
SV (%)			18.0	
SE			118.7	

Calixin M (3g/kg) and Peltact (1g/kg) gave the highest yields. In controlled laboratory conditions the mixture Maneb + Peltact (1.5 + 1.5g/kg) slightly improved the germination percentage and speed (unpublished data).

Table 7.9. Winter/Spring sowing comparison trial-chickpeas.

Mean yield (kg/ha) - % over spring sowing

Varieties	Beja		El-Kef		Mateur		Moghrane		
	Winter	Spring	Winter	Spring	Winter	Spring	Winter	Spring	
ILC 482	1719	1334	1715	1027	1285	830	1150	314	
Local	2229	1099	1933	1025	0	672	1074	360	
ILC 484	1901	1184	2008	930	1262	845	1040	324	
Average increase %	(61	89		92		227		
CV (dates)	2:	1.3	14.4		26.2		21.9		
SE	9(96.8		89.4		61.8		44.8	

7.5. Chickpea Spring/Winter Comparison Trial

A set of three chickpea varieties, ILC 482, ILC 484 and a local was used in a spring by winter comparison trial. Results are presented in Table 7.9. Yield increase due to winter sowing varied from 61% at Beja to 227% at Moghrane. The latter site is much drier than Beja and winter planting in this site has resulted in a very high yield increase. It is interesting to note the yield potential of the local variety when it is sown in winter and not hit by Ascochyta blight (Beja, El-Kef, Moghrane). No yield, however, was obtained when the local is attacked by Ascochyta blight at Mateur site. ILC 482 and ILC 484 were also hit but to a lesser extent and have produced similar yields to those obtained in Beja spring planting.