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METHODS TO SIMULATE DISTRIBUTIONS OF RAINFED CROP YIELDS

BASED ON FARMER INTERVIEWS by Ulrich Maerz*
 

ABSTRACT
 

Methods to derive and simulate crop yield distributions for use
in stochastic analysis of farming systems are explained with
examples from a rainfed farming area of NW Syria. 
MBASIC code,

for implementation of the methods on micro-computers, is
 
documented in the Appendix.
 

Farmers were asked about their yields per hectare in good,
normal and bad years, and the frequency of such years 
in 	the
past ten years. These esLimates are combined to form an array
of ten yield values for each farmer. The results for individual
farmers are aggregated in a linear hierarchial model whichallows calculation of a rrand mean, a h;rand sum of squares, andsums of squares lue to variation within farms over time and
between farms. The 
 mean sum of squares due to within-farm
variation can 
be 	regarded as a true estimator for the year-to­year variability of yields per hectare in the study area:

variance 
 foi the average farmer. 

The approach, of course, assunes that farmers have reliableknowledge about their own crop yields, can express these in
 
terms of good, normal and bad yields, and that the past ten
years are representative of a longer series of years. 
 This
approach also assume::, for the sake of simplicity, that crop
yields follow statistically normal distributions, fully

described by their means 
and variances.
 

A random series of normally distributed yield values are
simulated with the Box-Muller approximation, using empirical

estimates of the mean 
and standard deviation. This model is
extended to the multivariate case of simulating correlated

random series of yield vaues for n crops, based on a vector of
empiric mean yields and an 
empiric variance-covariance matrix.
Derivation of the latter from farmer interviews requires the
additional asumption that, for each farmer, a "good year" for
 one crop is 
a "good year" for the other crops, a "normal year"
for one crop is a 
"normal year" for the other cropr.,, and so on.
 

It 	is shown that crop yield distributions can b, reproduced in
the sense that (in 
the parameters) the simulated distributions
 are not significantly different from the empir'c distributions.

Such simulated yields are appropriate for driviL,, stochastic

whole--farm models. 
 Where long time-series of yield data are
not available, empiric estimates of crop yield distributions
 may be derived from interviews of farmers with long experience

in the area.
 

* 	 Institute of Agricultural Economics and Social Sciences,
Center for Tropical Agriculture, University of Hohenheim,
Stuttgart, West Germany; presently with the Farm Resource

Management Program, ICARDA, Aleppo, Syria.
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A. INTRODUCTION
 

Information on the distribution of yields of field crops is
 

*
required for stochastic
 ana]yses of farming systems. The
 

usual approach of anal, :;it , long time-series of yield data
 

leads Io gou' 
 approxJi (.ions of yield distributions, but
 

demands an extensive data base. 
Finding an appropriate
 

sequence of observations over 
a time-span of sufficient length
 

is often problematic or impossible in 
some cases, and
 

contributes to the reluctance of scientists to analyze farming
 

systems in dynamic or stochastic terms.
 

In this document, an 
approach to define yield distributions,
 

and simulate random yield values which conform to the under­

lying parameters, is presented with examples from NW Syria.
 

First, a method is shown for the estimation of yield
 

distribution parameters from far'i.-!r 
interviews. Next, a method
 

is shown for using the empirical parameters to simulate the
 

yields of a single crop. These methods are then extended tu the
 

multivariate case for simulation of correlated yields of "n"
 

crops. Finally, a documented listing of programs, 
 written in
 

MBASIC, is given in the Appendix to facilitate implementation
 

of the above methods on micro-computers.
 

Although these methods can 
only lead to aidroximations of
 

reality, they have the advantage of simplicity and need only a
 

minimum of da-Nta, obtainable for a particular area in 
a 	rapid
 

* 	 "stochastic" is a mathematical teriL designating e process
having a progression of jointly distributed random variables. 
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survey of farmers. The approach is explained with respect to
 

crop yields in 
a dry farming ;rea of Aleppo province, in North­

west. 
Syria, which receives 200-275 mm annual precipitation and
 

where barley is the most wi.dely cultivated crop.
 

The total study area, extending mainly from the districts east 

and south of Breda viliage to a point about 36 km south of
 

Breda, has approximately 3,500 farms from which a sample of 100 

farms, randomly selected, provided the base for interviews.
 

The 100 farmers kindly gave their estimates of crop yields
 

among a larger set of question for the author's study of farm
 

resource management in the area. 

B. ES3TIMATION OF 
YIELD DISTRIBUTIONS FROM FARMER-INTERVIEWS
 

Assuming that farmers have reliable knowledge about their crop
 

yields and can express this as estimates of yield in "good,"
 

.normal' and "bad" years 
as well as estimates of how often such
 

years have occurred 
over time, the follcwing two questions can
 

be asked:
 

1. "flow many years out of the last ten do you regard as 'good,'
'normal' and 'bad' with respect to your barley crop-?"
 

An example of a farmer's answer might be: 1 "good" year, 4
"Inormal" and 5 "bad" years.
 

and,
 

2. "How many bags of barley grain do you get per hectare when
 
years are 'good,' 'normal' and 'bad'?"
 

An example of a farmer's answer might be: 10 bags in 
a "good"

year, 5 bags in a "no.'mai" 
year and 2 bags in a "bad" year.
 

No special definition of good, ncrmal and bad 
was imposed; this
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was left open to the judgement of each farmer. 
Combining the
 

answers to these questions, 
a gross picture of the farmer's
 

yield distribution, 
over time, can be ccnstructed. Assuming
 

the weight of a standard bag of barley grain is 
110 kg, the
 

yields of the past ten years may be expressed as a ranked array
 

of ten values for each farmer (i.e.. 
 1100, 550, 550, 550, 550,
 

220, 220, 220, 220, 200 kg/ha, using the above examples).
 

The ten-value ariays of each farmer 
are aggregated across 
all
 

farmers to calculate a grand mean 
yield and a grvnd sum of
 

squares; 
 the latter 
includes botb the within-farm variation
 

over time and the between-farm variation. 
Decomposing the
 

grand su.m of squares into the between-farm and within-farm sums 

of squares with a simple hierarchial model described by Hartung 

(1985, p. 630), 
the mean sum of squares due to within-farm
 

variation 
can be regarded as a true estimator for the average
 

variance resulting from year-to-year variability of crop yields
 

in the area. The calculations are 
similar to those for 
a one­

way analysis of variance except that here we 
are not seeking a
 

tesb of significance; 
only the grand mean and the partitioned
 

sum of squares are of interest.
 

For the study area, tLe average barley grain yield (grand mean)
 

is estimated at about 396 kg/ha, with a standard deviation of
 

260 kg/ha for the average farmer, representing year-to-year
 

variation only (the coefficient of variation is about 66%)*
 

* 
--

for 
-

comparative 
-

estimates from independent sources, 

- - -

see
 
Appendix 5.
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Since the intention is 
to simulate a crop yield distribution,
 

over time, the underlying statistical parameters have to be
 

defined. 
Log-normal or a truncated normal distributions could
 

possibly give better fits to the empiric data (Day, 1965).
 

However, in this document, crop yield distributions over time
 

are assumed to be statistically normal because the simplest
 

methods to simulate and test random series are based on this
 

assumption, especially in the multivariate cases discussed
 

later.
 

C. SIMULATING RANDOM YIELDS OF A SINGLE CROP
 

The empirical yield estimates from farm interviews provided a
 

basis for specifying the parameters (x = 396 and s = 260) of a
 

normal distribution of barley grain yields over time for the
 

average farmer in the study area. 
These parameters can be used
 

in a simulation model to generate random "observations" which
 

follow the same distribution. Parameters derived by' other
 

methods (i.e., from a long time-series of measured yields in
 

the study area, if available) could also be used at this point.
 

A pseudo-random numb3r generator* gives independent, uniformly
 

distributed numbers r. ... r. 
 in the interval of 0 to 1. Two
 
4. 1+1 

such independent uniformly distributed random numbers are 

required to produce a single random number (u.) 
from a normal
 

distribution with a mean of zero and a standard deviation of 1,
 

* see Fruehwirt-h tnd Regler (1983, p. 92f.) for several of the
 
standard algorithms. Here, the MBASIC command RND is used.
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N(0,1), using the Box-Muller approximation (Fruehwirth and
 

Regler, 1983, p. 103-106):
 

u = -2 nr. cos (2 4!f ri+ ) 

Multiplying each ui 
by the empiric standard deviation (260),
 

then adding the product to the empiric i-an (396), normally
 

N(x',s') distributed values, xi, 
can be generated. A program,
 

written in MBASIC computer language, for the single-crop
 

simulation model is given in Appendix 1. 
 A flowchart of the
 

model is given in Figure 1.
 

D. VALIDATION OF THE SINGLE CROP MODEL
 

To test the model, two tests are proposed where an error level
 

of p = 0.10 is regarded as acceptable: 

1. For the test on randomness of the pseudo-random numbers, 

Mann's test statistic C can be used Uiartung, 1985, p. 249). 

Such a test is necessary since a bad "seed number" 
can cause
 

the pseudo-random number generator to perform poorly, especial­

ly if the number of runs is small.
 

2. 
For testing the series of pseudo-random numbers for uniform
 

distribution, Fruehwirth and Regler (1983, p. 93) 
propose the
 

Chi-square best for equal 
expected frequencies;
 

The basic characteristics of the distribution of simulated
 

values from 100 runs of the model, 
as well as the r6sults of
 

the two proposed tests, 
are given in Table 1. 
The Chi-square
 



--------- ------------

6
 

FIGURE 1. Flowchart of the Single-Crop Simulation Model-" 

Begin 

Read: x, s, n 

Randomize r. 

Randomize ri+ I 

U= -2 in ri cos (2 IT ri+, ) 

<i:n 
< 

Compute: 

x', s', c.s.', 

Write: x. 

and c.k.' 

x', -;', c.s.', and o.k.' 

I/ see Appendix 1 for MBASIC program code
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TABLE 1. 	Characteristics of the simulated barley grain yield

distribution for the average farmer in the study
 
area, and test values of the model after 100 runs
 

- i12
x s / 	 c.k.- c. s0-3/ 

363 
 313 	 3.44 0.51
 

-
 - - - - - - - - - - - -

Chi-square, 
 ri ... rm : 6.0 (Chi-square 90 : 14.7)
 

Chi-square, 
 ri+ 1 ...rm : 12.8
 

Mann's C-value, ri 
 . . . : -1.0 (uK 1,65) 

Mann's C-value, ri+ 1 .. .i : 0.16 

1/ 	the generated standard deviation (s') differs from the empiri 

standard deviation (s) by 17 % here, with only 100 runs. Re­

running the model 300 times reduced the difference to 0.01 %
 

coefficient of kurtosis
 

/ coefficient of skewness
 

A/ 4X is the quantile of the standard normal distribution N(0,1)
 

at the significance level p = 0.90
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and C values confirm (at p = 
.90) that the basic randomness
 

conditions for the model 
are met.
 

The mean and standard deviation of the simultion results can be
 

expected to converge on the underlyinF, empiric values (396,260)
 

as the number of runs is increased. 
Likewise, the coefficients
 

of kurtosis and skewness will converge on those for 
a normal
 

distribution: 3 and zero, respectively. 
See Table 1 for the
 

results after only 100 runs.
 

Simulated barley yields from the firsb 50 runs are 
plotted in
 

Figure 2 to illustrate the sort of variation which may be
 

expected by the average farmer in the study area over time.
 

According to this model, the probability that an average farmer
 

gets a barley grain yield less than 100 kg/ha, is about 12 %.
 

This means in 12 
out of 100 years the hypothetical farmer could
 

not harvest more than 100 kg/ha. 
The lower tail of the normal
 

distribution puts a pL'obability of 0.065 on 
yields of zero "or
 

less." Since negative yields are impossible, random values
 

less than zero are set to zero, and the resulting error is
 

neglected.
 

It is worth noting that poor barley crops have value for sheep
 

grazing as an alternative to their harvest value. 
Mazid and
 

iallajian (1983, p. 20) 
estimated economic thresholds, for
 

harvesting vs. grazing of mature barley crops, as higi- as 
321
 

kg/ha in NW Syria, and 235 kg/ha for all of Northern Syria.
 

Such high thresholds would imply the average farmer in the
 

study area may choose to graze his barley crop in a third or
 



1.04 

L ­

0.5
 

FIGURE 2. Results of 50 runs of the Barley Yield Simulation, inmt/ha.
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more of the years.
 

Based or the model, the probability for the average farmer to
 

get a barley grain yield of 1000 k4/ha or 
more is only 1.3 %. 

Thus, the average farmer in the study area could expect such a 

good year in only onG or two years out of a hundred. 

Individual farms; in the study area will be found with much
 

higher barley grain yields 
in rheir good years than indicated
 

for the average farmer (see Nour and Nygaard, 1986 p.131, 
for
 

an example of this 
in Hawaz v:.liage, near the study area). 

In addition to the questJons on "good", "normal" a:ind "bad" 

years, the 100 farmers were asked tc provide est.i.mates on their 

barley yield in the harvest of 1986. The distrAi'ution of yields 

among the 100 farmers in 1986 can be described as follows:
 

- With a mean of 490 and a standard deviation of 309 kg/ha, the
 

yields are comparable with earlier survey estimates by Somel,
 

et a (1984, p. 59) for the 1981 
and 1982 .'-vests in Zone 4 of 

NW Syria: means of 473 and 376, with standard deviations of 275 

and 335 kg/ha, respectively. However, the mean of 490 kg/ha 

for the study area in 1986 was about 24 % highe,r than the 

average yi.eld of th pa..t ten years; this is consistent with
 

opinions expressed by ,he majority of sampled farmers that the
 

harvest of 1986 was "not bad."
 

-
With a high posit*ive coefficient of skewness of 1.00 and a
 

coefficient of kurtosis of 3.53, 
 the 1986 distribution cannot
 

be regarded as normal (Kolmogorov-Smirnov D-value: 
0.149).
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- Yields less than 100 kg/ha were reported by about 10 % of the
 

farmers for 1986, 
while grain yields above 1000 kg/ha were
 

reported by about 5 %,
 

Sampling true nrop yields, 
over a numbcr of years, could
 

provide a basis for testing the accuracy of the model. 

Unfortunately, such records are not currently available in the 

study area, nor in ma.ny areas in the ICARDA ret ion where plant
 

breeding and agriiomy research are needed -n 
 the futLure. It is 

encouraging, thereforef, that a rapid and inexpelsive method is
 

available, for estimar.ing crop yield variai.i.n over 
 time, when 

farmers with long experience in an area can be interviewed. 

E. EXTENSION OF THE MODEL TO THE MUI,TIVAR{IATE CASE 

Farmers in many places grow more than one crop each year, the 

yields of which are more or less corrf-lated due to the simul-­

taneous influence of several faFtors, weathe r in particular. 

A method to simulaLe normally dist~riluteId, correlated, random, 

yield values for several. (n) crops is ep.ained below. 

The method is exemplified with emnpi ric data from 18 farmers, 

among the original 100, who grow both wheat and barley and who 

reported harvest values for wheat, grain (WG), barley grain 

(BG), wheat straw* (WST) and barley J.raw* (BST) for "good, 

* Amounts of straw collected from ficld; vary with method of
grain harvest, with the season and with anticipated need. forwinter stocks of feed. Since the amounts of straw collectedby farmers are not linked in exact proportion to grainyields, straw could be used in this example. 
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"normal" and "bad" years. 
An additional assumption, needed for
 

use of interview data in the multivariate case, is that yields
 
in a "gcod" year for 
one crop are associated with the "good
 

year" yields of the others grown by the farmer, arid so on 
for
 

.normal" and 
"bad" years. In the present case, with four crop
 

products, the data for each farmer would be given as 
four
 

arrays of ten values, providing a framework for calculation of
 

yield means, variances; (as described above) and correlations.
 

If 
"n" crop yields are correlated and should be analyzed siinul­

taneously, multivariate statistical methods hacro 
 to be applied.
 

Analogous to the arithrmetic mean and standard deviation in the
 

single-crop model, the multivariate model requires a vector of
 
empiric estimates of the mean values and empiric estiruates for
 

the respective variance-covariance matrix. 
 In the present case
 

of the four crop products, these data 
and the correlatioa
 

matrix are given in Table 2.
 

The elements in the main diagonal of the variance-covariance
 

matrix are the estimated average within-farm crop variances.
 

The other elements are the respective covariances (Coy ):
 
x,y
 

Cxy
Cov = rx,y V Var x Vary 

where r, y 
 is the correlation coefficient of yields X and Y.
 

F. A MODEL, FOR THE SIMULATION OF "n" CORRELATED PRODUCTS
 

A simulation model was 
written to generate random values for n
 
correlated yield distributions whose characteristics, the mean
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TABLE 2. Empirically estimated-vector of n mean yields, and
 
the variance-covariance and correlation matrices,
 
based on farmer interviews
 

vector 
of 
mean 
yields 

M 

F513 
460 

502 

458 

mean Wheat Grain 

mean Barley Grain 

mean Wheat Straw 

mean Barley Straw 

(WG), in kg/ha 

(BG), in kg/ha 

(WST), in kg/ha 

(BST), in kg/ha 

WG BG WST BST 

variance-
covariance 
matrix 

E = 

WG 

BG 

WST 

BST 

94771 63366 

79273 

58500 

68924 

106066 

38591 

45213 

40596 

40647 

WG BG WST BST 

correl-
ation 
matrix 

R = 

WG 

BG 

'AST 

BST 

1 0.774 

1 

0.618 

0.79k 

0.628 

0.805 

0.625 

1 
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vector (M') and variance-covariance matrix (E'), 
should not be
 

significantly different from the respective empiric mean vector
 

(M) and the empiric variarce-covariance matrix (E). 
 This model
 

generally follows 
the same calculation steps as outlined in
 

Figure 1. Ilowever, 
several important modifications, departing
 

from the single crop model, are applied:
 

- For "n" crop yields, the n-element empiric mean vector (M),
 

has to be read in, 
in place of a single empiric mean, x 

- in place of the single empiric standard deviation, s, an
 

n x n dimensional triangular matrix (A) must b,3 
read in. The
 

matrix A, however, m t first- be 
derived by decomposition of
 
the n x n dimens3iorial empiric varianee-covariance matrix (E),
 

by the method of Cho.csky. 
By Cho]J,esky's method, the matrix A 
is found such that E - AT A, where AT is the transpose of A
 

(Engel.n -Muellge. and Reut-.r, 1985. p. 51, and Fruehwirth and 

Regler, 1983, p. 104f. ). 

-F lor n crops, 2n 
independent and uniformly distributed random 

numbers, r. and r> in the1 , interval 1(0,1) have to generated
 

for each run.
 

- To transform the n independent N(O,I) 
--normally distributed 

numbers, obtained by n applications of the Box-Muller approx­

imation each run,, into n N(x',s') --normally distributed, cor­

relate,. random values, the single nrop formula x. = (ui s) + x 

has to be replaced by the matrix operations:
 

x. u. A + M
1 1 
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where 
A is the triangular matrix derived from the empiric
 

variance-covariance matrix, and M is 
the empiric mean vector.
 

The result, xi, is 
a vector of n forrelated random yield
 

values from each run of the model,
 

The process can be summarized in a paL-graph for the case where
 
one wishes 'o generate , vector denoting four crop yields:
 
eight independent and uniformly distributedi random numbers have
 

to be generated; 
 these are transformed into a vector of four
 
N(0,1) 
- normally distributed 
 random numbers 
'ui); this vector 

is multiplied by the triangular matrix, A and; the resulting 
vector is 
added to the mean vectcr. 
 The vector of resulting
 

sums comprises 'he four random crop yields from the 
run. With
 
a sufficiently large number of runs, the four random crop yield
 
values should prove to be correlated as specified and,
 

individually, to be following N(x,s) 
- normal distributions.
 

For the reader's convenience, Cholesky's algorithm for
 
decompositicn of the variance-covaricnca matrix is given in the
 
form of an MBASIC program in Appendix 2, with an example using
 
the empiric matrix of Table 2; 
 an MBASIC program for matrix
 
multiplication is 
given in Appendix 3, using 
E = AT A as an
 
example; 
 an MBASIC program for simulation of random yield
 

values fo-
 n crops, which are normally distributed and
 
correlated, is given in Appendix 4. 
The statistical algorithms
 

were adapted from Jacob and Jacar (1985, p. 73), 
Kahmann (1985,
 

p. 1), Hartung and Elpelt (1984, p. 5.) 
 and Lillifors (1967).
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G. VALIDATION OF THE "n" CROP MODEL
 

At this point, one could use estimates of means, variances and
 
covariances from long-run time-series of measured yields (if
 
such data were available), 
as 
the baci , for simuation and
 
tests of the model. 
 Since they are not available for the study
 
area, the author's survey estimates (in Table 2) are used.
 

Two tests are proposed to compare the results of the model with
 

the empiric data:
 

1. 
For comparison of the variance-covariance matrices, to test
 

the hypothesis
 

H E=E' against H: E 7 E
 

a modified Chi-square test, suggested by Hartung and Elpelt
 

(1984, p.236), is applied.
 

2. For comparison of the mean vectors, to test the hypcthesis
 

H : M = M' against HI: M I M' 
Hotelling's T2 - Statistic for unequal data length can be 

applied (Hartung and Elpelt, 1984, p. 230).
 

To test the generatcd pseudo-random numbers for equal distri­
bution and for randomness, the tests proposed in Section D,
 

above, can 
be applied.
 

After 100 
runs of the model, from which the results of the
 
first 50 are shown in Figure 3, the simulated values were used
 
to calculate a vector of mean yields (M'), 
a variance-covar­

iance matrix (E') and a correlation matrix (R'), 
which are
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given in Table 3. 
 These summaries of the simulation runs may
 
be compared with the empiric parameters (in Table 2) on which
 

the simulation was based.
 

The calculated Chi-square value of 1.73 is smaller than the
 

critical value of 10.64, showing that the variance-covariance
 

matrices E and E' are not significantly different at p 
= .90;
 
Hotelling's T2
 , used to compare the mean vectors M and M',
 
shows with a calculated value of 8.2, smaller than the critical 
value of 12.73, that the mean vectors are not significantly 

different at p z .90 Thus, r-esults of the simulation model 

can be regarded as reliable estimates of the four crop yield
 

distributions whose characteristics wore described simply by
 
the mean vector of yields and a 4 x 4 dimensional variance­

covariance matrix.
 

H. LIMITATIONS AND CONCLUSIONS
 

Three major limitations of the proposed methods should be kept
 

in mind by anyone considering their use:
 

1. 
The methods of interview, and analysis of interview data,
 

are based on the assumption that farmers, with long experience
 

at farming in a given area, 
 have reliable knowledge about
 

their own crop yields and 
can express this information
 

accurately in terms of "good," 
"normal" and "bad" crop years.
 

This assumption cannot be verified in areas where no records of
 
measured yields exist; 
therefore, over-
 or under-estimations of
 

the frequency of year-types may happen. 
 Also, a ten-year
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TABLE 3. Vector of n mean yields, and the variance-covariance 
and correlation matrices, based on 100 runs of the 
model. 

vector 

of 
mean 

yields 

491 

457 

500 

442 

mean Wheat Grain (WG), 

mean Barley Grain (BG), 

mean Wheat Straw (WST), 

mean Barley Straw (BST), 

L 

in kg/ha 

in kg/ha 

in kg/ha 

in kg/ha 

WG BG WST BST 

variance-
covariance 
matrix 

E' 

WG 

BG 

WST 

BST 

90698 68726 

96578 

69351 

90064 

124926 

47638 

57235 

55015 

54578 

WG BG WST BST 

correl-

ation 
matrix 

R-= 

WG 

BG 

WST 

BST 

1 0.742 

1 

0.658 

0.828 

1 

0.684 

0.796 

0.673 

1 

* The probabilities to get "negative yields," where the lower

tails of the normal distributions cross zbro, are between 1%
and 6% in this example. 
 In the sunmary of simulation results
here, the raw data were used 
 In Figures 2 and 3, simulated
 
negative values were set to zero.
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period may be too long for accurate recall by farmers on one
 

hand, 
 and on the other hand too short to adequately
 

characterize statistical distributinns of variable yields.
 

2. Crop yields, in general, are nrit normally distributed, but
 

positively skewed. 
 Therefore, by assuming normality, the true
 

means and respective measures of dispersion are not precisely
 

estimated for, 
or reproduced by, the simulation model.
 

3. By calculating yield means, and variances over time, for
 

the average farmer, an 
analysis of crop yield variability for
 

an identifiable single farmer is 
impossible. This dificulty
 

may be relieved somewhat by q priori sampling from a highly 

homogeneous class of farmers and 
farm conditions, or by p; p
 

clustering which allows the analysis to be carried out within
 

homogeneous clusters of conditions to which identifiable
 

farmers are associated.
 

Keeping in mind the above limitations, the approach of
 

estimating yield distribution parameters for the average farmer
 

in an area, and tc simulate random yield values which follow
 

the empirical distribution, has some 
important advantages for
 

time-bounded research on 
farm resource management:
 

1. 
The data base needed for the simulation model is easily
 

collected in a one-visit survey; 
since only a few questions
 

have to be asked, the information is quickly collected and the
 

costs of field work remain low. This 
can be very favorably
 

contrasted, in the dimensions of research cost and timeliness,
 

with the approach of waiting while multiple field measurements
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are taken over a long series of years in a new study area. 
 If
 
not a replacement for the latter approach, the survey and
 

simulation approach can provide valuable early and
 

complementary information.
 

2. 
The structures of the single-crop and n-crop models are
 
simple and readily implemented on micro-computers. Therefore,
 

the models should be considered as accessable tools for most
 

national research programs 
in the ICARDA region today and, 
in
 

the future, increasingly so.
 

3. 
Combined with whole-farm economic models, the yield
 
simulation models can help determine the over-time-stability of
 
alternative organizations of single farm plans. 
 This will be a
 
key to the prediction of the adoption and 
impact of new farm
 

technologies.
 

4. The yield simulation models based on 
farmer interviews will
 
provide a measure of "ground truth" for the validation of crop­
growth simulation models, particularly for ,reas where no
 

extensive field measurements have been made and where the
 
driving weather variables have to be generated by interpolation
 

from other sites.
 

5. 
Simple yield simulation models may provide a link between
 

the results of crop-growth models and yields of the other
 

crops for which growth models are not yet available. For
 

example, wheat crop growth may be simulated now with detailed
 

models of the physical processes but, in 
some areas, wheat is
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grown in rotation with lentils and water melons, two crops for
 

which growth models do not exist. 
 The simple yield simulation
 

models should provide a basis for estimating yield distribu­

tions for these two crops with respect to wheat yields
 

generated by the growth model; 
 this would enable economic
 

analyses in a stochastic whole-farm context.
 

Where wild annual fluctuations in crop yields are a very major 

feature of a farming system, as they are in the lower rainfall 

dry-farming areas of main interest to ICARDA, methods are 

needed for rapid and cost--effective characterization of agr­

ecological conditions for research and development planning. 

The present survey and simulation approach is i step in that 

direction. 
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APPENDIX 1. 	Simulation of a random series of normally distri­
buted yield values for a single crop
 

1.1 Algorithms and formulae: 
see text pages 4 to 6.
 

1.2 L'sting 	of an MBASIC program for the simulation of a
 
r ',.-.c series of normally distributed yield values for a
 
sing.e crop:
 

1 HOME
 
2 CLEAR
 
3 DIM X(500), X2(500), X3(500)

4 DIM Y(500), A(500), B(500), X(500)
5 PRINT"THIS PR.OGRAM SIMULATES A CROP YIELD DISTRIBUTION"
 
6 PRINT"BASED ON THE ASSUMPTION OF NORMALITY"
 
7 PRINT"THIS SIMULATION PROGRAM IS APPROPRIATE WHEN ONLY ONE"

8 PRINT"INDEPENDANT CROP YIELD IS TO 
 E SIMULATED"
 
9 PRINT"IF MORE THAN 500 RUNS ARE NEEDiEhD, THE DIMENSION"

10 PRINT'COMMAND 1N LINE 3 HAS TO PE CHANGED"
 
15 PRINT: VRINT"DATA ENTRY SECTION"
 
20 PRINT:INFUT"NUMBER OF RUNS?";N

25 PRtNT: INPUT"ARITHw4ETIC MEAN OF THE SAMPIE" Ml
 
30 PRINT:INPUT"STANDARD DEVIATION OF THE SA1,PL,";;SS1

35 PRINT: INPUT"ENTER RANDOM SEED NUMBER TO START 
 ALGORITHM";Z 
40 PRINT:PRINT"CALCULATION OF ThE DISTRIBUTION"
 
80 FOR I=1 TO N
90 A(1)=RND(I+tZ):B(I)=RND(I4-Z+I-)
 

100 X(I)=SQR(-2*LOG(A(I)))*COS(2*3. 14159*B(I))
 
130 X(1)=M1+SSI*X(1)
 
170 NEXT I
 
180 PRINT:PRINT"CALCULATION OF THE DIST.RIBUTION PARAMETERS"
 
190 FOR 1=1 TO N 
200 AA=AA+X(I)
 
210 NEXT I
 
215 S1=AA/N
 
220 FOR 1=1 TO N 
230 S,.,-94(X( I)-S ) 2 
240 S3=S3+(X(I)-Sl)^3
 
245 S4=S4+(X(I)-SI)^4
 
246 NEXT I 
247 ST:(S2/(N-1))^. 5
 
250 C;=(S3/(N-j))/ST^3
 
260 CKz(S4/(N-1))/ST^4
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APPENDIX 1. continued
 

270 REM OUTPUT SECTION
 
280 PRINT'PRINT"CROP YIELD DISTRIBUTION"
 
290 PRINT:PRINT
 

"
300 PRINT TAB(1) "NR. ;TAB(i0) "YXEID"
 
310 PRINT"- ..---.-.----.. . ... ..­
320 FOR I l TO N
 
330 FIZNT TAB(].) 1;TAB(10) X( i);
 
340 NEXT I
 
350 PRINT: PRINT
 
360 PI1NT"PARAMETER 
 S OF THE DISTRIBUTION" 
370 PRINT"1oJE/AN: ";TAB(20) S1 
3(6,VPRINT"STD: ";TAB(?,(/) ST 
3,v) PRINT"C.S. ";TA3(20) CS 
400 PRINT"C. K. : "; TAIB(20) C11 
410 PRINT"NI. RUNS: ";TAB(20) N
430 PINT"DO YOU WANT TO 5RINT THE OUTPUT? (Y/N):"; :GET A$
440 IF A$="Y" THEN 4bO ELSE END 
450 PRINT:P iN'I"DO YOU WANT TO SKIP DETAIL? (Y/N):"; GET A$
460 IF A$="Y" THEN GOTO 540 ELSE 470 
470 LPPINT"ONE-DIMIENSIONAI, CROP Y'LELD DISTRIBUTION": LPRINT 
480 LPRINT TAB(1) "NPR. ";TAB(I0) "YIELD" 
490 LPRINT"-. .. . . . . 
500 FOR I=1 TO N 
510 LPRINT TAB(l) I; TAB(10) X(1) 
520 NEXT I 
530 LPRINT 
540 I,PRTNT:LPRINT"PAAMETFRS OF THE DISTRIBUTION"
 
550 LPRINT"MEAN: ";S1
 
560 LPRiNT"STD: ";ST 
570 LPRINT"C.S.: ";CS 
580 LPRINT"C.K. : ";CK 
590 LPRINT"NUMBER OF RUNS: ";N 
600 END 

1.3 Example: 
see text, pages 5 - 11. 
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APPENIX 2. Decomposition of a matri2- by the method of Cholesky
 

1.1 Algorithms and formulae:
 

The variance-covariance matrix S
 

Sil 
 s12 ...... 
 Sln
 

s2 1 s2 2 ...... 
 '2n
 

S=
 

3nl Sn2 .
 nn
 

is to be decomposed into the triangular matrix A, 
such that 

S = AT A (where AT i. the 'Granspose of A) 

a11 ............. 
a ln
 

A=
 

a 
nn
 

by the recursive formulae (Fruehwirth and Regler, 1983, p.104):
 

ai l S i I< ni < 

a. = sii - 1-a 2) 2<i<ni­

k=l 

a = (Si.E. - k*a2)/ 2 < i i-1 

1iJ =( a.-1
-ki aikzajk)/ajj 
 2.< i < i-i 

a.. 0 i+l j n. 
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APPENDIX 2. continued
 

2.2. 
 Listing of an MBASIC program for the decomposition of a
 
matrix by the method of Cholesky:
 

1 HOME
 
2 CLEAR
 
3 PRINT"THIS PROGRAM CALCULATES THE CHOLESKY DECOMPO-":PRINT
4 PRINT"SITION OF MATRIX S INTO TRIANGULAR MATRIX A.":PRINT
5 PRINT"MATRIX S MUST BE SYMETRIC AND POSITIVE DEFINIT":PRINT
 
6 PRINT"IF DIMENSION OF MATRIX S IS GREATER THAN":PRINT

7 PRINT"20 X 20, THEN THE DIMENSION COMMANDS IN LINES":PRINT
 
8 PRINT"20 AND 25 NEED TO BE CHANGED"
 
9 PRINT:
 
25 DIM S(20,20),A(20,20)

27 PRINT"YOU CAN SFLECT THE DATA ENTRY OPTION OR, !F YOU":PRINT

28 PRINT"ALREADY ENTERED YOUR DATA, YOU CAN SELECT THE":PRINT
 
29 PRINT"CHOLESKY ALGORITHM":PRINT
 
30 PRINT"I)DATA ENTRY"
 
35 PRINT"2)CHOLESKY DECOMPOSITION"
 
40 PRINT"3)END"
 
50 INPUT"YOUR OPTION:";OP:PRINT
 
55 ON OF GOSUB 100,400,65
 
60 IF OP <> 0 THEN 30
 
65 END
 
100 REM DATA ENTRY SECTION
 
180 HOME:PRINT:PRINT"DATA ENTRY SECTION"
 
190 PRINT:INPUT"DIMENSION OF THE MATRIX=";N
 
200 FOR J=l TO N
 
210 FOR I=l TO N
220 PR'NT "S("; I;", J; ) "
 
230 INPUT S(I,J):S(J,I)=S(I,J)
 
240 NEXT I: NEXT J
 
250 PRINT:RETURN
 
400 HOME:PRINT"CHOLESKYS TRIANGULAR MATRIX IS NOW CALCULATED"
 
410 GOSUB 1000
 
420 PRINT:IF D>O THEN 470

430 PRINT"MATRIX NOT POSITIVE DEFINIT, THEREFORE,"

440 PRINT"CHOLESKY DECOMPOSITION NOT POSSIBLE" 
450 PRINT:RETURN 
470 FOR J-l TO N 
480 PRINT:PRINT"COLUMN";J 
490 FOR I=l TO N 
500 PRINT"A(" P- ",; J;" A(1,J) 
510 NEXT I:NEXT J 
530 LINE LNPUT"OUTPUT TO PRINTER(P)?";I$ 
540 IF I$="P" THEN 5F0 ELSE RETURN
 
550 PRINT"MAKE PRINTER READY":LINE INPUT"PAGE HEADER:";Z$
 
560 LPRINT:LPRINT Z$:LPRINT
 
570 FOR J=l TO N
 
580 LPRINT:LPRlNT"COLUMN";J
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APPENDIX 2. 
continued
 

590 FOR I=1 TO N
 
600 LPRINT "A(";1; ;J;,)=,;A(I,J )

610 NEXT I:NEXT J
 
620 PRINT:RETURN 
100 REM SUBPROGRAM CHOLESKY 
1020 FOR I=1 TO N
 
1030 FOR J=1 TO I
 
1040 A(I,J)=:A(J,I)=A(J,I)
 
1050 NEXT J:NEXT I
 
1060 D=A(1,1
 
1070 IF D<O THEN RETURN
 
1080 A(1,1)=SQR(A(1,1)) 
1090 FOR J=2 TO N 
1100 A(,J)=A(,J)/AM1,1) 
1110 FOR K=2 TO .J 
1120 FOR 1=2 TO K
1130 A(K,J)=--A(K,J)-A(I-1,J)*A(I-1,K)
 

1140 NEXT I
 
1150 -F K=J THEN 1180
1160 A (K, J)=--A(K,J) /A(K,K) 
1170 GOTO 1210
 
1180 D=D*A(J,J)
 
1190 IF D<O THEN RETURN
 
1200 A(J,J)=SQR(A(J,J))
 
1210 NEXT K:NEXT J: RETURN
 

2.3. 
 Example of Cholesky's decomposition:
 

The variance covariance matrix S
 

the transpose of A.
 

94771 63366 58500 38591 

S= 
63366 79273 68924 45213 

58500 68924 106066 40596 

38591 45213 40596 40647 
is decomposed into the triangular matrix A: 

307.849 205.835 190.028 125.357 

A= 0 192.107 155.172 101.036 

0 0 214.189 5.11844 

0 0 0 121.234 
such that S = AT A, where AT is 
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APPENDIX 3. Matrix Multiplication
 

3.1. Algorithms and formulae (i.e., 
for check of results of

Cholesky's decomposition in Appendix 2). The product of
 
two matrices, A and B
 

all a12 .. alh rb11 b12 ... blm 

AB=
 

Lan1 an2 ... bhl bh2 ... bhm 

is calculated as C (Hartung and Elpelt, 1984, p.51), 
where
 

h h h abi i 
ibi2 . .. alibim
 

Xiai.b.1 Z 1 b 2 ea.b. 
C=
 

h h hi=1ni li lanib i2 ..... '--nib m 

3.2. 
 Listing of an MBASIC program for calculating the product

of two matrices:
 

1 HOME:
 
2 CLEAR
 
4 DIM A(20,20), B(20,20), C(20,20)

5 PRINT"THIS PROGRAM CALCULATES THE PRODUCT OF 2 MATRICES,"

6 PRINT"A AND B. IF MATRIX A OR MATRIX B HAVE MORE THAN 20"

7 PRINT"ROWS OR COLUMNS THEN THE DIMENSION COMMANDS IN"
 
8 PRINT"LINE 4 MUST BE CHANGED"
 
10 PRINT:
 
20 PRINT
 
30 PRINT"DATA ENTRY SECTION"
 
35 PRINT:INPUT"NUMBER OF ROWS IN MATRIX A=?";N

40 PRINT:INPUT"NUMBER OF COLUMNS (H) IN MATRIX A=?";L
 
45 FOR J=l TO [,
 
50 FOR I=l TO N
 
55 PRINT"A(";I;",";J;")";
 
60 INPUT A(I,J)
 
65 NEXT I:NEXT J
 
75 PRINT:INPUT"NUMBER OF COLUMNS IN MATRIX B=?";M
 
80 FOR K=I TO M
 
85 FOR J=l TO L
 
90 PRINT"B(";J;", ";K;")=;

95 INPUT B(J,K)
 
100 NEXT J:NEXT K
 
101 PRINT:PRINT
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APPENDIX 3. continued
 

102 PRINT"THE 	PROGRAM IS NOW MULTIPLYING THE TWO MATRICES"
 
107 PRINT:
 
110 FOR K=1 TO M
 
115 FOR 1=1 TO N
 
120 S=O
 
125 FOR J=1 TO L
 
130 S=S+iA(I,J)*(J,K)
 
135 NEXT J
140 C(I,K)=S
 

145 NEXT I
 
150 NEXT K
 
155 PRINT"OUTFUT SECTION"

160 PRINT:PRINT"THE MATRIX C, THE PRODUCT OF A X B, IS:"
 
161 FOR K=1 TO M
 
162 F,"R I=1 TO N
 
165 PRINT"C(";I; , K;) C(1,K)
 
170 NEXT I:NEXT K
 
175 LINE INPUT"OUTPUT TO PRINTER(P)?";I$

180 IF I$="P" THEN 200 ELSE END
200 PRINT"IAKE PRINTER READY":LINE INPUT"PAGE HEADER:";Z$

205 LPRINT:LPRINT Z$:LPRINT
 
206 LPRINT"PRODUCT MATRIX C"
 
210 FOR K=1 TO M
 
220 FOR I=1 TO N
 
230 LPRINT"C(";I; ";K; ")";C( I,K)
240 NEXT I:NEXT K
 
250 END
 

3.3 	 Example: Multiplying the matrices AT and A from the

example in Appendix 2,
 

T =-307.849 0 0 0

A 205.835 192.107 
 0 0
 

190.028 155.172 214.189
125.357 101.038 5.11844 0
121.234
 

307.849 205.635 190.028 
 125.357]
A = 0 192.107 155.172 101.038 
00 214.189 5.11844 

00 0 121.234] 
the original variance-covariance matrix is re-calculated: 

TF94771 	 63366.1 58499.9 38591AT A = C = 	 163366.1 79273.2 68924 45213 
158499.9 68924 106066 40595.9

L38591 45213 40595.9 40 646.9
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APPENDIX 4. 
Simulation of a random series of n-correlated
 
crop yields
 

4.1. 	 Algorithms and formulae: 
see text, pages 12 - 16.
 

4.2. 	 Listing of an MBASIC program for the simulation of n
 
random series correlated yield values:
 

1 CLEAR:
 
2 HOME:
 
10 DIM A(5), D(200), E(200), F(6,200), L(5,200), C(5,5)
11 DIM X(200,5), P(5,200), PP(5,5), R(5,5), PPI(5), U(5,5)
20 PRINT"THIS PROGRAM CALCULATES A RANDOM SERIES OF N CORREL-'
21 PRIN'W"ATED CROP YIELDS BASED ON A MEAN VECTOR AND THE"
22 PRINT"DECOMPOSED VARIANCE-COVARIANCE MATRIX."
 
23 PRINT"IF MORE THAN 5 CORRELATE) CROPS, OR A SERIES OF MORE"
24 PRINT"THAN 200 RUNS SHOULD BE GENERATED, THE DIMENSION"

25 PRINT"COMMANDS IN LINES 10 AND 11 
SHOULD BE MODIFIED"

26 PRINT:PRINT"DATA ENTRY SECTION'
 
27 PRINT:INPUT"NUMBER OF EUNS:";M

30 PfRINT:INPUT"NUMBER OF CROPS:"N
 
40 FOR I=1 TO N

50 PRINT"ARITHMETIC NEAN OF CROP";I;:INPUT":";A(I)
 
70 NEXT I
 
80 PRINT:PRINT"ENTER CHOLESKY'S TRIANGULAR MATRIX"
 
90 FOR 1=1 TO N
 
100 FOR J=l TO N
 
110 PRINT "C(";I;",";J;")=";
 
120 INPUT C(I,J)
 
130 NEXT J:NEXT I
 
150 PRINT:PRINT:INPUT"ENTER SEED NUMBER";Z

151 PRINT:FRINT"THE PROGRAM GENERATES CORRELATED CROP YIELDS"
 
155 RANDOMIZE (Z)
 
160 FOR S=1 TO M
 
170 FOR J=1 TO N
 
180 D(S)=RND(Z+S+J)
 
190 E(S)=RND(Z+S+J+1)

200 X(SJ)=SQR(-2*LOG(D(S)))*COS(2*3.14159*E(S))
 
220 NEXT J:NEXT S
 
260 REM MATRIX MULTIPLICATION
 
267 FOR S=1 TO M
 
280 FOR 1=1 TO N
 
285 0=0
 
290 FOR J=1 TO N
 
300 U=U+C(I,J)*X(S,J)
 
310 NEXT J
 
320 F(I:S)=U
 
330 NEXT I
 
340 NEXT S
 
410 FOR S=1 TO M
 
420 FOR I=1 TO N
 
430 L(IS)=F(I.S)+A(In
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APPENDIX 4. continued
 

440 NEXT I
 
445 NEXT S

1000 REM CALCULATION OF PARAMETERS FOR N DISTRIBUTIONS
 
1010 FOR I=l TO N
 
1015 AA(I)=O
 
1020 FOR S=1 TO M
 
1030 AA(I)=AA(I)+L(I,S)
 
1040 NEXT S
 
1050 B(I)=AA(I)/M
 
1070 NEXT I
 
1080 FOR I=l TO N
 
1090 FOR S=l TO 1
 
1100 P(I,S)-L(I,S)-B(I)
 
1200 NEXT S
 
1220 NEXT I
 
1230 FOR I=l TO N
 
1240 FOR S=l TO M
 
1260 PPI(I)=PPI(I)+P(I,S)^2
 
1270 NEXT S
 
1276 NEXT I
 
1279 PP(I,J)=O

1260 FOR I=l TO N
 
1290 FOR J=I+l TO N
 
1300 FOR S=1 TO M
 
1310 PP(I,J)=P(I,J)+(P(I,S)*p(J,S))
 
1325 NEXT S
 
1330 NEXT J
 
1340 NEXT I
 
1400 FOR I=l TO N1410 R(II)=I
 
1420 FOR J=I+l TO N
1430 R(I,J)=PP(I,J)/(SQR(PPI)*Pp1(J)))
 

1435 R(Jl,)=R(I,J)

1440 NEXT J:NEXT I
 
1450 PRINT:PRINT"CALCULATION FINISHED"
1460 PRINT"SKIP DETAILED RUN RESULTS(Y/N):";:GET A$

1470 IF A$="Y" THEN 1800 ELSE 1500

1500 PRINT:PRINT"N-CROP SIMULATION"
 
1510 PRINT -­
1520 FOR 1=1 TO N 
1530 Y=Y+10 
1540 PRINT TAB(Y)"CROP" I;
1550 NEXT I 
1560 FOR S=! TO M
 
1570 Y=O
 
1580 FOR I=l TO N
 
1590 Y=Y+10
 
1600 PRINT TAB (Y) L(I,S);

1610 NEXT I
 
1620 NEXT S
 
1630 PRINT
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APPENDIX 4. continued
 

1640 PRINT"OUTPUT TO BE PRINTED? (Y/N):";:GET A$

1650 IF A$="Y" THEN 1680 ELSE 1800
 
1660 LPRINT"SIMULATION FOR ";N;" 
CROPS"
 
1670 LPRINT
 
1680 Y=10
 
1690 LPRINT TAB(I) "NR.";
 
1700 FOR I=1 TO N
 
1710 LPRINT TAB(Y) "CROP" I;
 
1720 Y=Y+10
 
1730 NEXT I
 
1740 FOR S=I TO M
 
1750 Y=10
 
1760 LPRINT TAB(l) S;
 
1780 FOR I=l TO N
 
1790 LPRINT TAB(Y) L(I,S)
 
1792 Y=Y+10
 
1794 NEXT I
 
1796 NEXT S
 
1800 PRINT:PRINT"DISPLAY OF CORRELATION MATRIX (Y/N):";:GET A$

1810 IF A$='Y" THEN 1820 ELSE 2000
 
1820 HOME:
 
1830 PRINT:?PINT"CORRELATION MATRIX OF THE SIMULATION MODEL"
 
1840 FOR I=l TO N
 
1850 PRINT STR$(I)+":";
 
1860 FOR J=l TO N
 
1870 PRINT USING"##t.####";R(J,I);
 
1880 NEXT J
 
1890 PRINT:NEXT I

1900 PRINT:PRINT"PRINT THE CORRELATION MATRIX? (Y/N):";: GET A$
1910 IF A$="Y' THEN 1915 ELSE 2000
 
1915 LPRINT:LPRINT

1920 LPRINT"CORRELATION MATRIX OF THE SIMULATION MODEL RESULTS"
 
1930 FOR I=l TO N
 
1940 LPRINT STR$(I)+":";
 
1950 FOR J=l TO N
 
1960 LPRINT USING "#o .1140";R(J, I);
 
1970 NEXT J
 
1980 LPRINT
 
1990 NEXT I
 
2000 PRINT:PRINT"DISPLAY COVARIANCE MATRIX? (Y/N):";:GET A$
 
20!0 IF A$="Y" THEN 2020 ZLSE 2200
 
2020 HOME:
 
2025 PRINT:PRINT"COVARIANCE MATRIX OF SIMULATION RESULTS"
 
2030 FOR I=l TO N
 
2040 FOR J=l TO N
 
2050 U(I,J)=R(IJ)*(SQR(PPI(I)*pP1(J)))
 
2060 NEXT J
 
2070 NEXT I
 
2075 FOR I=l TO N
 
2080 PRINT STR$(I)+":";
 
2090 FOR J=l TO N
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APPENDIX 4. 
continued
 

2100 PRINT USING" ## . ,

2110 NEXT J:PRINT:NEXT I
2120 PRINT:PRINT"PRINT COVARIANCE MATRIX? (Y/N):"; :GET A$
2130 IF A$="Y" THEN 2135 ELSE 2200
 
2135 LPRINT:LPRINT
 
2140 LPRINT"VARIANCE-COVARIANCE OF SIMULATION MODEL RESULTS"
 
2150 FOR 1=1 
TO N
 
2155 FOR J=1 
TO N

2160 U(I,J)=R(I,J)*(SQR(PPI(I)*PP(J)))
 
2170 NEXT J:NEXT I
 
2180 FOR I=1 TO N
 
2185 LPRINT STR$(I)+: ;
 
2190 FOR J=1l TO N

2192 LPYINT USING" 
 Utt#.##,,;U(I,J)/M;

2194 NEXT NiE4':NWXTI2200 PRINT:PRINT"DISPLAY 14EAN VECTOR OF RESULTS?(Y/N):";:GET A$
2210 IF A$="Y" THEN 2229 ELSE END 
2220 HOME:
 
2230 PRINT:PRINT TAB(1) 
-NR.";TAC(10) "MEAN"
 
2240 PRINT
 
2250 FOR I=1 TO N
 
2260 PRINT TAB(I) I;TAB(10) B(I)

2270 NEXT I
2280 PRINT:PRINT"FPRINT OUT OF THE MEAN VECTOR? (Y/N):";:GET A$
2290 IF A$="Y" THEN 2295 ELSE END
 
2295 LPRINT:LPRINT
 
2300 LPRINT"MEAN VECTOR OF THE SIMULA'ION RESULTS"
2320 LPRINT:LPRINT TAB(1) 
"NR.";TAB(10) "MEAN"

2340 LPRINT:FOR I=1 
TO N

2350 LPRINT TAB(1) I;TAB(10) B(I)

2360 NEXT I
 
2370 END
 

4.3. Example: - 19
see text, pages 12 
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APPENDIX 5. Corroborating Data.
 

The author is satisfied that barley yield estimates, over a
 
series of years from measured samples in a random selection of
 
farmers' fields in the study area, which would be appropriate
 
for testing the present survey estimates, do not exist.
 

Nevertheless, other independent estimates may be compared
 
with the present results. First is a ten--year series of annual
 
estimates of barley grain yields by the local office of the
 
Syrian Ministry of Agriculture and Arrarian Reform (in Breda
 
village) for villages in the study area. The second set of
 
data are results of a three-year ICARDA study in Hawaz village,
 
nearby and with similar rainfall conditions.
 

1. In the Study Area:
 

The Tel Dhaman District Agricultural Office, in Breda, produces

estimates each year for barley areas harvested, yield per
 
hectare and total production. Unpublished records of these
 
estimates were kindly made available for several villages in
 
Zone 3 and Zone 4 of the study area, for the ten year period
 
1977-66. The aggregate zone yield estimates are presented

below, allowing an independent comparison with the present
 
survey estimates of average barley grain yields and heir var­
iance over time.
 

Barley Grain (kg/he)
 

YEAR Zone 3 Zone 4
 

1977 400 250 
1978 600 600 
1979 270 250 
1980 920 900 
1981. 800 500 
1982 550 550 
1983 700 400 
1984 0 0 
1985 400 200 
1986 500 400 

Mean ............................. 514 405
 
Standard Deviation .. ............... 267 251
 
Coefficient of Variation ......... 52% 62%
 
Coefficient of Skewness .......... -0.35 0.37
 
Coefficient of Kurtosis........... 2.66 2.85
 
Correlation Coefficient (Zone 3, Zone 4): 0.89
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APPENDIX 5. 
 continued
 

The mean and standard deviation calculated for the Zone 4 esti­mates 
(including the zero-yield value for 1984) are 
close to
those derived with the present survey method: 
 the mean being
2.3 percent higher and the standard deviation 3.5 percent lower

than the author's estimates.
 

However, 
half of the study area is classified as Zone 3 farm­land where average yields for the ten-year period are calcula­ted at 514 kg/ha: 
about 30 percent higher than the author's
aggregate estimate. 
 Thus, 
if the above data are accurate, the
author's estimates have understated aggregate mean yields in
the area by about 14 percent while overstating the coefficient
of variation by about 18 percent.
 

2. In Hawaz village:
 

Nour and Nygaard (1986, pp. 115 and 131) reported on barley
yields at ,awaz village, in 
a Zone 4 farming area about 40 km
east of Breda, for three seasons (1977/78, 78/79 and 79/80).
In that period, the 
lowest measured seasonal rainfall was
150mm, the next highest was 
240mm and the highest was 270mm.
The corresponding mean harvested barley grain yields from
village fields (unweighted for field size) were 
170, 336 and
681 kg/ha, respectively. 
 These data were derived from a
multiple-visit survey by ICARDA staff and 
were based on farmer
interviews, not actual measures of yield samples in 
farmers'
 
fields.
 

When one considers only the three mean yield values to calcu­late a grand mean and standard deviation over time, the results
(x = 396 kg/ha, and s = 
261 kg/ha) are virtually identical to
the author's estimates. 
 However, this remarkable coincidence
should not be given too much importance since it is based on
data specific only to "three years, and the location was 
outside
 
the study area.
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