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ABSTRACT

Methods to derive and simulate crop yield distributions for use
in stochastic analysis of farming systems are explained with
examples from a rainfed farming area of NW Syria. MBASIC code,
for implementation of the methods on micro-computers, is
documented in the Appendix.

Farmers were asked about th=ir yields per hectare in good,
normal and bad years, and the frequency of such years in the
past ten years. These esbLimetes are combined to form an array
of ten yield values for each farmer. The results for individuatl
farmers are aggredated in a linear hierarchial model which

allows calculation of a grand mean, a (‘rand sum of squares, and
sums of squares due to variation within farms over time and
betwesn farms. The mean sum of squares due to within-farm

variation can be regarded as a true estimator for the year-to-
year variability of yields per hectare in the study area:
variance foi1 the average farmer.

The approach, of course, assumes that farmers have reliable
knowledge about their own crop yields, can express these in
terms of good, normal and bad vields, and that the past ten
years are representative of a londer series of years. This
approach also assume:, for the sake of gimplicity, that crop
yields follow statistically normal distributions, fully
described by their means and variances.

A random series of normally distributed yield values are
simulated with the Box-Muller approximation, using empirical
estimates of the mean and standard deviation. This model is
extended to the multivariate case of siwulating correlated
random series of yield values for n crops, based on a vactor of
empiric mean yields and an empiric variance-covariance matrix.
Derivation of the latter from farmer interviews requires the
additional asumption that, for each farmer, a "good year" for
one crop is a "good year" for the other crops, a "normal year”
for one crop is a "normal year"” for the other crup., and so on.

It is shown that crop yield distributions can b: reproduced in
the sense that (in the parameters) the simulated distributions
are not significantly different from the empir'c distributions.
Such simulated yields are appropriate for drivius stochastic
whole-farm models. Whers long time-series of yield data are
not available, empiric estimates of crop vield distributions
may be derived from interviews of farmers with long experience
in the area.

¥ Institute of Agricultural Economics and Social Sciences,
Center for Tropical Agriculture, University of Hohenheim,
Stuttgart, West Germany; presently with the Farm Resource
Management Program, ICARDA, Aleppo, Syria.
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A. INTRODUCTION

Information on the distribution of vields of field crops is
required for stochastic* analyses of farming systems. The
usual approach of analv iy long time-series of yield data
leads %o gouo? approxi: iions of yield distributions, but
demands an extensive data base. Finding an appropriate
sequence oi cbservations over a time-span of sufficient length
is often problematic or impossible in some cases, and
contributes to the reluctance of scientists to analyze farming

systems in dynamic or stochastic terms.

In this document, an approach to define yield distributions,
and simulate random yield values which corform to the under-
lying parameters, is presented with exampl=zs from NW Syria.
First, a method is shown for the estimation of yvield
distribution parameters from farm~r interviews. Next, a method
is shown for using the empirical parameters to simulate the
yields of a single crop. These methods are then extended tu the
multivariate case for sirulation of correlated yields of "n"
crops. Finally, a documnented listing of programs, written in

MBASIC, is given in the Appendix to facilitate implementation

of the above methods on micro-computers.,

Although these methods can only lead to arproximations of
reality, they have the advantage of simplicity and need only a

minimum of dnta, obtainable for a particular area in a rapid

¥ ‘'stochastic" is a mathematical tern designating e process
having a progression of Jointly distributed random variables.



survey of farmers. The approach is explained with respect to
crop yields in a dry farming asrea of Aleppo province, in North-
west. Syria, which receives 200-275 mm annual precipitatiosn and

where barley is the most widely cultivated crop.

The total study area, extending mainly from the districts east
and south of Breda village to a point about 36 km south of
Breda, has approximately 3,500 farms from which a sample of 100
farms, randomly selected, provided the base for interviews.
The 190 farmers kindly gave their estimates of crop yields
among a larger set of questions for the author’s study of farm

resource management. in the area.

B. ESTIMATION OF YIELD DISTRIBUTIONS FROM FARMER-TNTERVIEWS

Assuming that farmers have reliable knowledge about their crop
yields and can express this as estimates of yield in "good, "
“normal” and “"bad" years as well as estimates of how often such
years have occurred over time, the follcwing two questions can
be asked:

1. "How many years out of the last ten do you regard as ’good, ’
'normal’ and ’bad’ with respect to your barley crop?"

An example of a farmer’s answer might be: 1 "good" year, 4
"normal” and 5 “"bad"” years.

and,

2. "How many bags of barley grain do you get per hectare when
years are ’‘good,’ ’rormal’ and ’bad’?"

An exauple of a farmer’s answer might be: 1J bags in a “"good"
year, 5 bags in a "normal” year and 2 bags in a "bad" year.

No special definition of good, ncrmal and bad was imposed; this



was left open to the judgement of each farmer. Combining the
answers to these questions, a gross picture of the farmer’s
yield distribution, over time, can be ccnstiucted. Assuming
the weight of a standard bag of barley grain is 119 kg, +he
yields of the past ten years may be expressed as a ranked array
of ten values for each farmer (i.e.. 1100, 553, 55@, 55Q, 550,
220, 220, 220, 220, 200 kg/ha, using the above examples),

The ten-value ariays of each farmer are aggregated across all
farmers to calculate a grand mean yield and a grond sum of
squares; the latter includes both the within-farm variation
over time and the between- farm variation. Decomposing the
grand sum of squares into the between-farm and within-farm sums
of squares with a simple hierarchial model described by Hartung
(1985, p. 63@), the mean sum of squares due to within-farm
variation can be regarded as a true estimator for the average
variance resulting from year-to-year variability of ecrop yields
in the area. The calculations are simiiar to those for a one-
way analysis of variance except that here we are not seeking a
tesc of significance; only the grand mean and the partitioned

sum of squares are of interest.

For the study area, tl.e average barley grain yield (grand mean)
is estimated at about 396 kg/ha, with a standard deviation of
260 kg/ha for the average farmer, representing year-to-year

variation only (the coefficient of variation is about 66%) .

¥ for comparative estimates from independent sources, see
Appendix 5.



Since the intention is to simulate a crop yield distribution,
defined. Log-normal or a truncated normal distributions could
possibly give better fits to the empiric data (Day, 1965).
HJowever, in this document, crop yield distributions over time
are assumed to be statistically normal because the simplest
methods to simulate and test random series are based on this
assumption, especially in the multivariate cases discussed

later.

C. SIMULATING RANDOM YIELDS OF A SINGLE CROP

The empirical yield estimates from farm interviews provided a
basis for specifying the parameters (x = 396 and s = 260) of a
normal distribution of barley drain yields over time for the
average farmer in the study area. These parameiters can be used
in a simulation model to generate randem "observations" which
follow the same distribution. Parameters derived by other
methods (i.e., from a long time-series of measured yields in

the study area, if available) could also be used at this point.

A pseudo-random numhbar generator* gives independent, uniformly
distributed numbers Ty o Ty in the interval of @ to 1. Two
such independent uniformly distributed random numbers are
required to produce a single random number (ui) from a normal

distribution with a mean of zero and a standard deviation of 1,

X see Fruehwirth and Regler (1983, p. 92f.) for several of the
standard algorithms. Here, the MBASIC command RND is used.



N(@,1), using the Box-Muller approximation (Fruehwirth and

Regler, 1983, p. 103-1@6) :

u, = V/ -2 1n r, ' cos (217 ri+l)

Mulviplying each u, by the empiric standard deviation (263),
then adding the product to the empiric wean (396), normally
N(E’,s’) distributed values, X;, can be generated. A program,
written in MBASIC computer language, for the single-crop
simulation model is given in Appendix 1. A flowchart of the

model is given in Figure 1.

D. VALIDATION OF THE SINGLE CROP MODEL

To test the model, two tests are proposed where an error level

of p = P.10 is regarded as acceptable:

1. For the test on randomness of the pseudo-random numbers,
s test statistic C can be used (nartung, 1985, p. 249).
Such a test is necessary since a bad "seed number” can cause
the pseudo-random number generator to perform poorly, especial-

ly if the number of runs is small.

2. For testing the series of pseudo-random numbers for uniform
distribution, Fruehwirth and Regler (1883, p. 93) rropose the

Chi-square test for equal expected frequencies;

The basic characteristics of the distribution of simulated
values from 100 runs of the model, as well as the results of

the two proposed tests, are given in Table 1. The Chi-square



FIGURE 1. Flowchart of the Sindgle-Crop Simulation Modell/
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TABLE 1. Characteristics of the simulated barley grain yield
distribution for the average farmer in the study
area, and test values of the model after 120 runs

; sl/ c.k.g/ c.s 3/
3€e3 313 3.44 .51
Chi-square, r, RS S 6.9 (Chi-squareg,gg : 14,7)
Chi-square, el T 12.8
) - N PR ﬂ/l .
Mann’s C-value, r, cearp 1.0 (%x : 1.65)
Mann’s C-value, Ciel T @.16

1/ the generated standard deviation (s’) differs from the empiri
standard deviation (s) by 17 % here, with only 109 runs. Re-

running the model 302 times reduced the difference to @.01 %
4/ coefficient of kurtosis
3/ coefficient of skewness

4/ %x is the quantile of the standard normal distribution N(@,1)

at the significance level p = @.9%



and C values confirm (at P = .98) that the basic randomness

conditions for the model are met.

The rean and standard deviation of the simultion results can be
expected to converge on the underlyine empiric values (396, 26@)
as the number of runs is increased. Likewise, the coefficients
of kurtosis and skewness will convergz on those for a normal
distribution: 3 and zero, respectively. See Table 1 for the

results after only 10@ runs.

Simulated barley yields from the first 50 runs are plotted in
Figure 2 to illustrate the sort of variation which may be

expected by the average farmer in the study area over time.

According to this model, the probability that an average farmer
gets a barley grain yield less than 10@ kg/ha, is about 12 %.
This means in 12 out of 100 years the hypothetical farmer could
not harvest more than 100 kg/ha. The lower tail of the normal
distribution puts a pcobability of @.965 on vields of zero "or
less."” Since negative yields are impossible, random valuss
less than zero are set to zero, and the resulting error is

neglected.

It is worth noting that poor barley crops have value for sheep
grazing as an alternative to their harvest value. Mazid and
Ballajian (1983, p. Z@) estimated economic thresholds, for
harvesting vs. grazing of mature barley crops, as higlh as 321
kg/ha in NW Syria, and 235 kg/ha for all of Northern Syria.
Such high thresholds would imply the average farmer in the

study area may choose to graze his barley crop in a third or
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FIGURE 2. Results of 50 runs of the Barley Yield Simuiation, in mt/ha.
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more of the years.

Based or. the model, the probability for the average farmer to
get a barley grein vield of 190@ kg/ha or more is only 1.3 %.
Thus, the average farmer in the study area could expect such a

good year in only onc or two years out of a hundred.

Individual farms in the study area will be found with much
higher barley grain yields in vheir good years than indicated
for the averade farmer (see Nour and Nygaard, 19686 p.131, for

an example of this in Hawagz village, near the study areay.

In addition to the questions on "good”, “"normal” and "bad"
years, the 199 farmers were asked to provide estimates on their
barley yield in the harvest of 1986. The distribwution of yields

among the 199 farmers in 1986 can be described as follows:

~ With a mean of 499 and a standard deviation of 3¢9 kg/ha, the
yields are comparable with eariier survey eshtimates by Scomel,
et al (1984, p. 59) for the 1981 and 1982 lLa-vests in Zone 4 of
RW Syria: means of 473 and 376, with standard deviations of 275
and 335 ka/ha, respectively. However, the mean of 490 kg/ha
for the study erea in 1956 was about 24 % higher than the
averade yield of th= past ten years; this is consistent with
opinions expressed by rvhe majority of sampled farmers that the

harvest of 1980 was “"not bad. "

- With a high positive coefficient of skewness of 1.9@ and a
coefficient of kurtosis of 3.53, the 1986 distribution cannot

be regarded as normatl (Kolmogorov-Smirnov D-value: @d.149).



11

- Yields less than 100 kg/ha were reported by about 13 ¥ of the
farmars for 1986, while grain yields above 1309 kg/ha were

reported by about 5 %,

Sampling true crop vields, over a numter of years, could
provide a basis for testing the accuracy of the model.
Unfortunately, such records are not currently availlable in the
study area, nor in many areas in the ICARDA region where plant
ktreeding and agronomy research are needed in Lhe future. It is
encouraging, therefore, that a rapid and inexpensive method isg
available, for estimacing crop yield variation over time, when

farmers with long experience in an area can be interviewed,

E. EXTENSION OF THE MODEL TO THE MULTIVARIATE CASE

Farmers in many places grow more than one crop each year, the
vields of which are more or less correlated due to the simul--
taneous influence of several fa~tors, weather in particular,

A method to simulate normally distributed, correlated, randcem,

yield values for several (n) crops 1s explained below.

The method is exemplified with empiric data from 18 farmers,
among the original 100, who grow both wheat. and barley and who
reported harvest wvalues for wheat grain (WG), barley grain

(BG), wheat straw* (WST} and barley straw* (BST) for "good,

¥  Amounts of straw collected from fields vary with method of
grain harvest, with the season and with anticipated need for
winter stocks of feed. Since the amount.s of straw collected
by farmers are not linked in eXact proportion to grain
vields, straw could be used in this example.
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"normal” and "bad" years. An additional assumption, needed for
use of interview data in the multivariate case, is that yields
in a "gcod" year for ons crop are associated with the "good
year"” yields of the others grown by the farmer, and so on for
"normal” and “bad" years. In the present case, with four crop
products, the data for each farmer would be given as four
arrays of ten values, providing a framework for calculation of

yield means, variances (as described above) and correlations.

If "n" crop yields are correlated and should be analyzed simul-
taneously, multivariate stztistical methods have to be applied.
Analogous to the erithmetic mean and standard deviation in the
single-crop model, the multivariate model requires a vector of
empiric estimates of the mean values and empiric estimates for
the respective variance-covariance matrix. In the present case
of the four crop producis, these data and the correlation

matrix are given in Tablie 2.

The elements in the main diagonal of the variance~covarinnce
matrix are the estimated average within-farm crop variances.

The other elements are the respective covariances (Covx y):

?

Cov = rx,y . \/Varx Vary
where r, y is the correlation coefficient of yields X and Y.

F. A MODEL FOR THE SIMULATICN OF “n" CORRELATED FRODUCTS

A sinulation model was written to generate random values for n

correlated yield distributions whose characteristics, the mean



TABLE 2.

vector
of
mean
yields

variance-
covariance
matrix

correl-
ation
matrix

13

Empirically estimated -vector of n mean yields, and
the variance-covariance and correlation matrices,
based on farmer interviews

E

r513 F;ean Wheat Grain (WG), in kg/ha
460@ mean Barley Grain (BG), in kg/ha
502 mean Wheat Straw (WST), in kg/ha
458 mean Barley Straw (BST), in kg/ha
b - A
WG BG WST BST
WG 94771 63366 58500 38591
BG 79273 68924 45213
WST 106066 42596
BST 40647
WG BG WST BST
WG 1 3.774 ©.618 .628
BG 1 @.79¢ 3. 805
'AST 1 @.625
BST 1
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vector (M’) and variance-covariance matrix (E’), should not be
significently different from the respective empiric mean vector
(M) and the empiric variance-covariance meatrix (F). This model
generally follows the same calculation steps as outlined in

Figure 1. However, several important modifications, departing

from the single crop model, are applied:

- For "n" crop Yields, the n-element empiric mean vector (M),

has to be read in, in place of a single enpirie mean, X ;

- in place of the single emrirvic standard deviation, s, an
n x n dimensional triangular matrix (A) nust ba read in. The
matrix A, however, imust first be derived by decomposition of

L]

the n x n dimensional empiric variance-covariance matrix (RE),

by the method of Choiosky. By Choliesky’s method, the matrix A
is found such thal E = AT A, where AT 1s the transpose of A
(Engeln -Muellges and Reutsr, 1985, p. 51, and Fruehwirth and

Regler, 1983, p. 10df.).

- For n crops, 2n indep<ndent and uniformly distributed random
numbers, r. and rj+], in the interval I(@,1) bave to generated

for each run.

- To transform the n independent N{@,1) - normally distributed
numbers, obtained by n applications of the Box-Muller approx-

imation ecach run, 1into n N(%’,s’) -~ normally distributed, cor-
related random values, the single crop formula X; = (ui s) + x

has to be replaced by the matrix operations:
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where A is the triangular matrix derived from the empiric
variance-covariance matrix, and M is the empiric mean vector.
The result, X5 is a vector of n eorreiated random yield

values from each run of the model.

The process can be summarized in a pacagraph for the case where
one wishes Ly generate . vector denoting four crop yields:
eight independent and uniformly distributed random numbers have
to be generated; +hese are transforned into a vector of four
N(@,1) - normally distributed random numbers (uj); this vector
is multiplied by the triangular matrix, &, and; ths resulting
vector ie added to the mean vector. The vecior of resulting
sums comprises Lhe four random crop yields from the run. With
a surficiently large number of runs, the four random crop yield
values should prove to be correlated as specified and,

individually, to be following N(;,s) - normal distributions.

For the reader’s convenience, Cholesky’s algorithm for
decompositicn of the variance-covariance matrix is given in the
form of an MBASIC program in Appendix 2, with an example using
the empiric matrix of Table 2; an MBASIC program for matrix
multiplication is given in appendix 3, using E = AT A as an
example; an MBASIC program for simulation of random yield
values for n crops, which are normally distributed and
correlated, is given in Appendix 4. The statistical algorithnms
were adapted from Jacob and Jscar (1985, p. 73), Kahmann (1985,

pP. 1), Hartung and Elpelt (1984, p. 51) and Lillifors (1967).
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G. VALIDATION OF THE “n" CROP MODEL

At this point, one could use estimates of means, variances and
covariances from long-run time-series of measured yields (if
such data were available), as the besis for timulation and
tests of the mndel. Since they are not available for the study

area, the author’s survey estimates (in Table 2) are used.

Two tests are proposed to compare the results of the model with
the empiric data:
1. For comparison of the variance-covariance matrices, to test

the hypothesis

HO: E = B’ against HI: Ez B’
& modified Chi-square test, suggested b Hartungz and Elpelt

(1984, p.236), is applied.
2. For comparison of the mean vectors, to test the hypcthesis

HO: M =M against le Mz M
Hotelling’s T2 - Statistic for unequal data length can be

applied (Hartung and Elpelt, 1984, p, 230) .

To test the generated pseudo-racdem numbers €or equal distri-
bution and for randomnsss, the tests prorosed in Section D,

above, can be applied.

After 180 runs of the nodel, from which the results of the
first 5@ are showa in Figure 3, the simulated values were uged
to calculate a vector of mean yiclds (M’), a variance-covar-—

iance matrix (E’} and a correlation matrix (R’), which are
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FIGURE 3. Results of 50 Simulation runs for Random Correlated
Yields of Wheat Grain, Barley Grain, Wheat Straw
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diven in Table 3. These summaries of the simulation runs may
be compared with the empiric parameters (in Table 2) on which

the simulation was based.

The calculated Chi-square value of 1.73 is smaller than the
critical value of 10.64, showing that the variance-covariance
matrices E and E’ are not significantly different at D = .96;
Hotelling’s T2, used to compare the mean vectors M and M’,
shows with a calculated value of 8.2, smaller than the critical
value of 12.73, that the mean vectors are not significantly
different at p = ,9@ Thus, results of the simulation model
can be regarded as reliable estimates of the four crop vield
distributions whose chsracteristics were described simply by
the mean vector of yields and a 4 x 4 dirensional variance-

covariance matrix.

H. LIMITATIONS AND CONCLUSIONS

Three major limitations of the proposed methods should be kept

in mind by anyone tonsidering their use:

1. The methods of interview, and analysis of interview data,
are based on the assumption that farmers, with long experience
at farming in a given aree, have reliable knowledge about
their own crop yields and can express this information
accurately in terms of “good, " "normal” and "bad" Crop years.
This assumption cannot be verified in areas where no records of
measured yields exist; therefore, over- or under-estimations of

the frequency of Year-types may happen. Also, a ten-year



TABLE 3.

vector
of
mean
yields

variance-
covariance
matrix

correl-
ation
matrix

Vector of n mean yvields,
and correlation matrices,
model.

M’ =

E’=

R’ =

19

-

and the variance-covariance
based on 102 runs of the

— ]
491t mean Wheat Grain (WG), in kg/ha
457 mean Barley Grain (BG), in kg/ha
500 mean Wheat Straw (WST), in kg/ha
442 mean Barley Straw (BST), in kg/ha
_‘J — et
WG BG WST BST
WG 92698 68726 69351 47638
BG 86578 92264 57235
WST 1249286 550156
BST 54578
WG BG WST BST
WG 1 @.742 ?.658 ?.684
BG 1 @.8628 D.796
WST 1 @.673
BST 1

¥ The probabilities to get "negative yields, " where the lower

tails of the normal distributions Cross zuro,
and 6% in this example.
here, the raw data were used

negative values were set to zero.

are between 1%
In the summary of simulation results
In Figures 2 and 3, simulated
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period may be too long for accurate recall by farmers on one
hand, and on the other hand teo short to adequately

characterize statistical distributimns of variable yields.

2. Crop yields, in general, are not normally distributed, but
positively skewed. Therefore, by assuming normality, the true
means and respective neasures of dispersion are not precisely

estimated for, or reproduced by, the simulation mndel.

3. By calculating yield means, and variances over time, for
the average farmer, an analysis of crop yield variability for
an identifiable single farmer is impossible. This dificulty
homogeneous class of farmers and farm conditions, or by ex post
clustering which allows the analysis to be carried out within
homogereous clusters of conditions to which identifiable

farmers are associated.

Keeping in mind the above limitations, the approach of
estimating yield distribution parameters for the averagde farmer
in an area, and tc simulate random vield values which follow
the empirical distribution, has some important advantages for

time-bounded research on farm resource management:

1. The data base needed for the simulation model is easily
collected in a one-vizit survey; since only a few questions
have to be asked, the information is quickly collected and the
costs of field work remain low. This can be very favorably
contrasted, in the dimensions of research cost and timeliness,

with the approach of waiting while multiple field measurements



are taken over a long series of years in a new study area. If
not a replacement for the latter approach, the survey and
simulation approach can prrovide valuable early and

complementary information.

2. The structures of the single-crop and n-crop models are
simple and readily implemented on micro-computers. Therefore,
the models should be considered as accessable toocls for most.
national research programs in the ICARDA region today and, in

the future, increasingly so.

3. Combined with whole-farm economic models, the yield
simulation models can help determine the over-time-stability of
alternative organizations of single farm plans. This will be a
key to the prediction of the adoption and impact of new farm

technologies.

4. The yield simulation models based on farmer interviews will
provide a measure of "ground truth” for the validation of crop-
growth simulation models, particularly for sreas where no
extensive field measurements have been made and where the
driving weather variables have to be generated by interpolatinn

from other sites.

5. Simple yield simulation models may provide a link between
the results of crop-growth models and yields of the other
crops for which growth models are not yet available. For
example, wheat crop growth may be simulated now with detailed

models of the physical processes but, in some areas, wheat is
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€rown in rotation with lentils and water melons, two crops for
which growth models do not exist. The simple yield simulation
models should provide a basis for estimating yield distribu-
tions for these two crops with respect to wheat yields
€enerated by the growth model; this would enable economic

analyses in a stochastic whole-farm context.

Where wild annual fluctuations in crop vields are a very major
feature of a farming system, as they are in the lower rainfall
dry-farming areas of main interest to ICARDA, methods are
needed for rapid and cost-effective characterizaticn of agr-
ecological conditions for research and development planning.
The present survey and simulation approach is a step in that

directiosn.
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APPENDIX 1. Simulation of a random series of normally distri-
buted yield values for a singls crop

1.1 Algourithms and formulae: see text pages 4 to 6,

1.2 Listing of an MBASIC program for thse simulation of a
r-ndom series of normally distributed yield values for a
single crop:

HOME

CLEAR

DIM X1{5@%0), X2(50@), X3(520)

DIM Y(50@), A(50%), B(533), X(500)

PRINT"THIS PROGRAM SIMULATES A CROP YIELD DISTRIBUTION"
PRINT"BASED ON THE ASSUMPTION OF NORMALITY"

PRINT"THTS SIMULATION PROGRAM IS5 APPROPRIATE WHEN ONLY ONE™
PRINT" INDEPENDANT CROP YIELD IS TO BE SIMULATED"
PRINT"II" MORE THAN 500 RUNS ARE NEEDEWD, THF DIMENSION®
10 PRINT"COMMAND TN LINE 3 HAS TO BE CHANGED"

15 PRINT:PRINT"DATA ENTRY SECTION"

20 PRINT: [NFUT"NUMBER OF RUNS?";HN

25 PRINT:1NPUT"ARITHMRTIC MEAN OF THiT OAMPTE" ;M1

30 PRINT:INPUT"STANDARD DEVIATION OF THE SAMPLE™; 581

35 PRINT:INPUT"ENTER RANDOM SEED NUMBER TO START ALGORITHM" ; Z
4@ PRINT:PRINT"CALCULATION OF THE DISTRIBUTION"

82 FOR I=1 TO N

8@ A(I)=KEND{I+Z):B(I)=RND(I+Z+1)

162 X(I)=SQR{~2*LOG(A(I)))*CO3(2%3. 14159%B( 1))

130 X(I)=M1+SS1%X(I)

176 NEXT 1

180 PRINT:PRINT"CALCULATION OF THE DISTRIBUTION PARAMETERS"
199 FOR I=1 T0 N

200 AA=AA+X(1)

210 NEXT 1

215 S1=AA/N

220 FOR I=1 TO N

230 SI=52+(X(I1)-S1)"2

243 S3=83+(X(1)-S1)"3

245 B54=84+(X(1)-51)"4

248 NEXT 1

247 5T=(82/(N-1))".5

a5 Ci=(83/(N-1))/ST"3

260 CK=(54/(N-1))/8T"4

DD~ UA LN =
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APPENDIX 1. continued

270
280
290
300
310
320
330
340
350
360
372
3647
KoLt
409
410
430
440
450
460
470
489
49¢
41419
510
520
530
540
559
569
570
580
59¢
600

1.3

REM OUTPUT SECTION

PRINT-PRINT"CROP YIELD DISTRIBUTION"
PRINT:PRINT

PRINT TAB(1) "NR.";TAB(1¢) "YIELD"

PRINT "~ e o0

FOR I=1 TO N

PRINT T&B(1) I[;TAB(10) X(1);

NEXT T

PRINT:PRINT

PRINT"PARAMETERS OF THE DISTRIBUTION®
PRINT"MEAN: *; TAR{2¢) S1

PRINT"STD: " ; TAB(20) ST

PRINT"C.S. :";TAB(20) C8

PRINT"C.K. :"; TAB(2{)) CK

PRINT"NIT. ROUNS:";TAB(29) N

PEINT"DO YOU WANT TO FRINT THE OUTPUT? (Y/N):";
IF A$="Y" THEN 450 GLSE END

PRINT:PRINT"DO YOU WANT TO SKIP DETAIL? (Y/N):™
IF A$="Y" THEN GOTO 549 ELSE 47¢
LPEINT"ONE-DIMENSIONAL CROP YIELD DISTRIBUTION"
LPRINT TAB(1) "NR.";TAR(i9) “YIELD"

LPRINT "~ e

FOR I=1 TO N

LPRINT TAB(1) I; TaB(1@) X(1)

NEXT I

LPRINT

LPRINT:LPRINT "PARAMETERS OF THE DISTRIBUTION®
LPRINT"MEAN: ";S1

LPRYNT"STD: ;ST

LPRINT"C.3.: ";CS

LPRINT"C.K.: ";CK

LPRINT"NUMBER OF RUNS: ";N

END

Example: see text, pages 5 - 11.

:GET A$
; cGET A$
:LPEINT
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APPENIX 2. Decomposition of a matrix. by the method of Cholesky

1.1 Algorithms and formulae:

The variance~covariance matrix S

r~— . -
Sll 512 ...... Sln
Bg1  Sgg e Son
S =
_Snl Sng ...... SnnJ

is to be decomposed into the triangular matrix A, such that

S = AT 4 (where AT is the iranspose of A)

nn

by the recursive formulae (Fruehwirth and Regler, 1983, p.104):

851 T 8517 /51 1<ign
i_:l 2 .
355 = /(555 - % %k ) 2<ign
i-1
.. = R Xa . ) -
alJ (le kgi 8y a‘]k)/a_]‘j 2 <3 <gi-1
a.. =@ i+l € j < n

J1l
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2.2. Listing of an MBASIC progrem for the decomposition of a
matrix by the method of Cholesky:

1 HOME

2 CLEAR

3 PRINT"THIS PROGRAM CALCULATES THE CHOLESKY DECOMPO-": PRINT
4 PRINT"SITION OF MATRIX S INTO TRIANGULAR MATRIX A.":PRINT

5 PRINT"MATRIX S MUST BE SYMETRIC AND POSITIVE DEFINIT" :PRINT
6 PRINT"IF DIMENSION OF MATRIX 5 IS GREATER THAN" : PRINT

7 PRINT"20 X 20, THEN THE DIMENSION COMMANDS IN LINES" :PRINT
8 PRINT"2¢ AND 25 NEED TO BE CHANGED"

9 PRINT:

25 DIM S(20,20),A(20, 292)

1

PRINT"YOU CAN SFLECT THE DATA ENTRY OPTION OR, iF YOU":PRINT
PRINT"ALREADY ENTERED YOUR DATA, YOU CAN SELECT THE" :PRINT
PRINT"CHOLESKY ALGORITHM":PRINT
PRINT"1)DATA ENTRY"
PRINT"2)CHOLESKY DECOMPOSITION"
PRINT"3)END"
INPUT"YOUR OPTION: " ;OP:PRINT
ON OF GOSUB 199, 403, 65
IF OP <> 9 THEN 3@
END
REM DATA ENTRY SECTION
HOME: PRINT: PRINT"DATA ENTRY SECTION"
PRINT: INPUT"DIMENSION OF THE MATRIX=";N
200 FOR J=1 TO N
210 FOR I=1 TO N
22@ PRINT"S(";I;",";J;")="
23@ INPUT S(I,J):S(J,I)=S(I,J)
249 NEXT I: NEXT J
250 FRINT:RETURN
40@ HOME:PRINT"CHOLESKYS TRIANGULAR MATRIX IS NOW CALCULATED"
410 GOSUB 1902
420 PRINT:IF D>@ THEN 4792
43¢ PRINT"MATRIX NOT POSITIVE DEFINIT, THEREFORE, "
440 PRINT"CHOLESKY DECOMPOSITION NOT POSSIBLE"
450 PRINT:RETURN
473 FOR J=1 TO N
480 PRINT:PRINT"COLUMN";J
490 FOR I=1 TO N
S50@ PRINT"A(",I;",";J;")=";A(L,J)
510 NEXT I:NEXT J
530 LINE INPUT"OUTPUT TO PRINTER(P)?";I$
540 IF I$="P" THEN 5'2 ELSE RETURN
550 PRINT"MAKE PRINTER READY":LINE INPUT"PAGE HEADER: ";Z$
56@ LPRINT:LPRINT Z$:LPRINT
570 FOR J=1 TO N
580 LPRINT:LPRINT"COLUMN";J

DU DWW N
RS RS RCRORE RSBV I

[ e =)
[Fale RS
(SESES]
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APPENDIX 2. continued

580 FOR I=1 TO N

603 LPRINT "A(";I;",";J;")="3A(I,J)
810 NEXT I:NEXT J

6292 PRINT:RETURN

1D
1020
1239
1040
1052
106¢
1670
1987
1090
1100
1110
1120
113¢
1140
1150
1160
1170
1180
1190
1200
1219

2.3.

REM SUBPROGRAM CHOLESKY
FOR I=1 TO N

FOR J=1 TO I

AL J)=0:A{J, I)=A(J, 1)
NEXT J:NEXT I

D=A(1,1)

IF D<® THEN RETURN

A1, 1)=0QR(A(1,1))

FOR J=2 ™0 N
Al1,J)=A(1,J)/A01,1)
FOR K=2 TO .J

FOR I=2 TO K
A(K,J)rA(K,J)—A(I—l,J)*A(I-l,K)
NEXT I

iF K=J THEN 1150

A(K,J)=A(K,J)/A(K,K)
GOTO 121p

D=D*A(J, J)

IF D<@ THEN RETURN

A(J, J)=SQR(A(J,J))
NEXT K:NEXT J: RETURN

Example of Cholesky’s decomposition:

The variance covariance matrix S

38591 |
45213
40596
40647

125.357
101.038
5.21844

121.23§J

(94771 63366 58500
63366 79273 68924
= 58500 68924 106266
| 38591 45213 40596
is decomposed into the triangular matrix A:
r507.849 205.835 19¢.9328
7 192. 107 155.172
A= %] @ 214,189
8 %] 2 %)
such that S = AT A, where AT is the transpose of A.
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APPENDIX 3. Matrix Multiplication
3.1. Algorithms and formulae (i.e., for check of results of
Cholesky’s decomposition in Appendix 2). The product of
two matrices, A and B
r— - — -
811 812 -+ By P13 Byg -or Byp
AB =
811 %2 ¢ fpp Bp1 Pha co¢ by
S - S —

is calculated as C (Hartung and Elpelt, 1984, p.51), where

" h h h
Sa,.b, > a,.b., ..... S a,.b.
i=1 1i7i1 i=1 11712 i=1 1i7im
c= | . : :
h h h
izzlanibil iglanlbiz """ iflani im
bme -

Listing of an MBASIC program for calculating the product
of two matrices:

1 HOME:

2 CLEAR

4 DIM A(20,20), B(20,20), C(20, 20}

5 PRINT"THIS PROGRAM CALCULATES THE PRODUCT OF 2 MATRICES, "
6 PRINT"A AND B. IF MATRIX A OR MATRIX B HAVE MORE THAN 20"
7 PRINT"ROWS OR COLUMNS THEN THE DIMENSION COMMANDS IN"

8 PRINT"LINE 4 MUST BE CHANGED"

109 PRINT:

PRINT

PRINT"DATA ENTRY SECTION"

35 PRINT:INPUT"NUMBER OF ROWS IN MATRIX A=%";N

PRINT: INPUT"NUMBER OF COLUMNS (H) IN MATRIX A=?";L

45 FOR J=1 TO L
FOR I=1 TO N

55 PRINT"A(";I;","
INPUT A(I,J)

65 NEXT I:NEXT J
7% PRINT: INPUT"NUMBER OF
FOR K=1 TO M

85 FOR J=1 TO L
PRINT"B(";J;", "
85 INPUT B(J,K)
100 NEXT J:NEXT K
191 PRINT:PRINT

;ds =",

COLUMNS IN MATRIX B=2?";M

KT
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APPENDIX 3. continued

162 PRINT"THE PROGRAM IS NOW MULTIPLYING THE TWC MATRICES"
167 PRINT:

119 FOR K=1 TO M

115 FOK =1 TO N

120 $=9

125 FOR J=1 TO L

130 S=8+A(I1,J)%(J,K)

135 NEXT J

140 C(1I, K) =S

145 NEXT I

150 NEXT K

155 PRINT"OUTFUT SECTION"

160 PRINT:PRINT"THE MATRIX C, THE PRODUCT OF A X B, 1S:"
161 FOR K=1 TO M

162 FOR I=1 TD N

165 PRINT"C(";I;",“;K;")=";C(I,K)

179 REXT I:NEXT K

175 LINE INPU1 'OUTPUT TO PRINTER(P)?";

180 IF I$="P" THEN 200 ELSE END

200 PRINT 'MAKE PRINTER READY":LINE INPUT"PAGE HEADER: ";Z$
295 LPRINT:LPRINT Z%:LPRINT

206 LPRINT"PRODUCT MATRIX C"

219 FOR K=1 TO M

220 FOR I=1 TO N

230 LPRINT"C(";I;",";K;")=";C(I,K)

246 NEXT I:NEXT K

25@ END

3.3 Example: Multiplying the matrices AT and A from the

example in Appendix 2,

T 307.849 ) 7 2
A" = 205.835 192,107 7 o
159.028 155.172 214,189 @

125.357 101.038 5.11844 121.23QJ

——

(307.849 205.835 190.028 125,357

A = 7 192.107 155.172 101.038
o 2 214.189 5.11844
o @ o 121.234 |

the original variance-covariance matrix is re-calculated:
T 94771 63366.1 58499.5 38591
A=C-= 63366.1 79273.2 68924 45213

58499.9 68924 106066 49595. 9

385981 45213 40595.9 40646.9
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APPENDIX 4. Simulation of a random series of n-correlated
crop yields

4.1. Algorithms and formulae: see Text, pages 12 - i86.

4.2. Listing of an MBASIC program for the simulation of n
random series correlated yield values:

1 CLEAR:

2 HOME:

19 DIM A(5), D(220), E(200), F(35,200), L(5,208), C(5,5)

11 DIM X(20@,5), P(5,209), PP(5,5), E(5,5), PP1(5), U(5,5)
20 PRINT"THIS PROGRAM CALCULATES A RANDOM SERIES OF N CORREL-~"
21 PRIN'{"ATED CROP YIELDS BASED ON A MEAN VECTOR AND THE"
22 PRINT"DECOMPOSED VARTANCE-COVARIANCE MATRIX. "

23 PRINT"IF MORE THAN & CORRELATED CKOPS, OR A SERIES OF MORE"
24 PRINT"THAN 20@ RUNS SHOULY) BE GENERATED, THE DIMENSION"
25 PRINT"COMMANDS 1IN LINES 12 AND 11 SHOULD BE MODIFIED"™
26 PRINT:PRINT"DATA ENTRY SECTION"

27 PRINT:INPUT"NUMBER OF RUNS: " ;M

3¢ PRINT:INPUT"NUMBER OF CROPS: " :N

42 FOR I=1 TO N

50 PRINT"ARITHMETIC MEAN OF CROP"; 1, :INPUT":";A(I)

79 NEXT I

8@ PRINT:PRINT"ENTER CHOLESKY’S TRIANGULAR MATRIX"

99 FOR I=1 TO N

190 FOR J=1 TO N

110 PRINT TC(t I, Ity =

1290 INPUT C(I,J)

13 NEXT J:NEXT I

15@ PRINT:PRINT:INPUT"ENTER SEED NUMBER";Z

151 PRINT:FRINT"THE PROGRAM GENERATES CORRELATED CROP YIELDS"
155 RANDOMIZE (2Z)

160 FOR S=1 TO M

170 FOR J=1 TO N

180 D(S)=RND(Z+S+J)

198 E(S)=RND(Z+S+J+1)

200 X(S,J)=SQR(—2*LOG(D(S)))*COS(Z*B.14159*E(S))

220 NEXT J:NEXT 8

260 REM MATRIX MULTIFLICATION

267 FCOR S=1 TO M

280 FOR I=1 TO N

285 U=0

299 FOR J=1 TO N

300 U=U+C(1,J)*X(S,J)

31@ NEXT J

320 F(I.S)=0

332 NEXT 1

340 NEXT S

410 FOR S=1 TO M

420 FOR I=1 TO N

430 L(I,S)=F(I.SY+A(T)
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440 NEXT I

445 NEXT S

102@ REM CALCULATION OF PARAMETERS FOR N DISTRIBUTIONS
1610 FOR I=1 TO N

1015 AA(I)=0

1220 FOR S=1 TO M

1030 AA(I1)=AA(I)+L(I,S)

1440 NEXT S

1050 B(I)=AA(I)/M

1270 NEXT I

1980 FOR I=1 TO N

1990 FOR S=1 TO M

1100 P(I,S)-L(I,S)-B(1)

120@ NEXT S

122@ NEXT I

123¢ FOR I=1 TO N

124 FOR S=1 TO M

1260 PP1(I)=PP1(I)+P(I,S)"2

1270 NEXT S

1276 NEXT I

1279 PP(I,J)=0

1280 FOR I=1 TO N

1299 FOR J=I+1 TO N

1300 FOR S=1 TO M

1310 PP(I,J)=PP(I,J)+(P(I,S)*P(J,S))
1325 NEXT S

1330 NEXT J

1349 NEXT I

1400 FOR I=1 TO N

1410 R(I, I)=1

1420 FOR J=I+1 TO N

1430 R{I,J)=PP(I,J)/(SQR(PP1(I)%PP1(J))}
1435 R(J,1)=R(I,J)

1449 NEXT J:NEXT I

145¢ PRINT:PRINT"CALCULATION FINISHED"
1460 PRINT"SKIP DETAILED RUN RESULTS(Y/N):"; :GET A$
1470 IF A$="Y" THEN 180@ ELSE I5@@
150% PRINT:PRINT"N-CROP SIMULATION"
1519 PRINT" = mm o "

1520 FOR I=1 TO N

1530 Y=Y+10

154@ PRINT TAB(Y)“CROP" I;

1550 NEXT 1

1560 FOR S=1 TO H

1576 Y=0

1580 FOR I=1 TO N

1590 Y=Y+10

1600 PRINT TAB (Y) L(I,S);

1810 NEXT I

1620 NEXT S

1639 PRINT
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1649
1850
1669
1875
1680
1694
1700
1710
1723
1730
1740
1750
1760
1780
1799
1792
1794
1796
1800
181%
1820
1839
1840
1850
1860
1879
1889
139¢
1800
1910
1615
1920
1930
1940
1950
1960
1979
1960
1990
2000
2019
2020
2025
2030
2049
2050
2069
20870
2075
2089
2090

PRINT"OUTPUT TO BE PRINTED? (Y/N):"; :GET A$

IF A$="Y" THEN 165Q0 ELSE 180G

LPRINT"SIMULATION FOR ";N;" CROPS"

LPRINT

Y=10

LPRINT TAB(1) “"NR.";

FOR I=1 TO N

LPRINT TAB(Y) "CROP" I:

Y=Y+1i@

NEXT I

FGE S=1 TO M

Y=1i0

LPRINT TAB(1) S;

FOR I=1 TO N

LPRINT TAB(Y) L(I,S)

Y=Y+10

NEXT I

NEXT S

PRINT:PRINT"DISPLAY OF CORRELATION MATRIX (Y/N):";:GET A$
IF A%="Y" THEN 1820 ELSE 2000

HOME:

PRINT:PRINT"CORRELATION MATRIX OF THE SIMULATION MODEL"
FOR I=1 TO N

PRINT STR$(I)+":";

FOR J=1 TO N

PRINT USING"#it4, sttt " ;R(J, 1) ;

NEXT J

PRINT:NEXT I

PRINT:PRINT"PRINT THE CORRELATION MATRIX? (Y/N):";: GET A$
IF A$="Y" THEN 1915 ELSE 200@

LPRINT:LPRINT

LPRINT"CORRELATION MATRIX OF THE SIMULATION MODEL RESULTS"
FOR I=1 TO N

LPRINT STR$(I)+™:";

FOR J=1 TO N

LPRINT USING "###, s ;R(J, 1);

NEXT J

LPRINT

NEXT I

PRINT: PRINT"DISPLAY COVARIANCE MATRIX? (Y/N):";:GET A$

IF A$="Y" THEN 2020 ZTLSE 2200

HOME :

PRINT:PRINT"COVARIANCE MATRIX OF SIMULATION RESULTS"
FOR I=1 TO N

FOR J=1 TO N

U{I,J)=R(I,J)*(SQR(PP1(I)*PP1(J)))
NEXT J

NEXT I

FOR I=1 TO N

PRINT STR$(I)+":*";

FOR J=1 TO N
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2100
2110
2120
2130
2135
2140
2159
2155
2160
2179
2189
2185
219@
2192
2194
2203
2219
2220
2230
2240
2250
226@
2279
2280
2290
2295
23%2
2320
2340
23590
2380
2379

4.3.

PRINT USING"##@ﬂ####.###";U(I,J)/M;

NEXT J:PRINT:NEXT I

PRINT:PRINT"PRINT COVARIANCE MATRIX? (Y/N):"; :GET A$
IF A$="Y" THEN 2135 ELSE 2209

LPRINT:LPRINT

LPRINT“VARIANCE-COVARIANCE CF SIMULATION MODEL RESULTS"
FCR I=1 TO N

FOR J=1 TO N

U(I,J):R(I,J)*(SQR(PPI(I)*PPI(J)))

NEXT J:NEXT I

FOR I=1 TO N

LPRINT STR$(I)+":";

FCR J=1 TO N

LEPRINT USING“ﬁ##ﬂﬁ###.ﬁ##”;U(I,J)/M;

NEXT J:ul= N1 NEXT I

PRINT:PRINT"DISPLAY MEAN VECTOR OF RESULTS?(Y/N):"; :GET A3
IF A$="Y" THEN 222¢ EL.SE END

HOME :

PRINT:PRINT TAB(1) "NR. "; TAL{1@) “"MEAN"

PRINT

FOR I=1 TO N

FRINT TAB(I) I;TAB(1@) B(I)

NEXT I

PRINT:PRINT"PRINT OUT OF THE MEAN VECTOR? (Y/N):";:GET A$
IF A$="Y" THEN 2295 ELSE END

LPRINT:LPRINT

LPRINT“"MEAN VECTOR OF THE SIMULATION RESULTS"
LPRINT:LPRINT TAB(1) "NR. "; TAB(1@) "MEAN"

LPRINT:FOR I=1 TO N

LPRINT TAB(1) 1, TAB(1@) B(I)

NEXT I

END

Example: see text, pages 12 - 19
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APPENDIX 5. Corroborating Data.

The author is satisfied that barley yield estimates, over a
series of years from measured samples in a random selection of
farmers’ fields in the study area, which would be appropriate
for testing the present survey estimates, do not exist.
Nevertheless, other independent estimates may be comparedqd
with the present results. First is a ten-year series of annual
estimates of barley grain yields by the local office of the
Syrian Ministry of Agriculture and Agrarian Reform (in Breda
village) for villages in the study areca. The second set of
data are results of a three-year ICARDA study in Hawaz village,
nearbvy and with similar rainfall conditions.

1. In the Study Area:

The Tel Dhaman District Agricultural Office, in Breda, produces
estimates each year for barley areas harvested, yield per
hectare and total production. Unpublished records of these
estimates were kindly made available for several villages in
Zone 3 and Zone 4 of the study area, for the ten year period
1977-86. The aggregate zme yield estimates are presented
below. allowing an independent comparison with the present
survey estimates of average barley grain yields and their var-
lance over time.

Barley Grain (kg/he)

YEAR Zone 3 Zone 4
1977 400 259
1978 69 (1919
1979 279 259
1980 92¢ 90D
1981 8090 500
1982 550 55@
1983 790 400
1984 a3 ]
1985 400 200
1986 500 400
Mean ......... ... . . . . . 514 405
Standard Deviation ............... 267 251
Coefficient of Variation ......... 52% 62%
Coefficient of Skewness .......... -.35 @.37
Coefficient of Kurtosis .......... 2.66 2.85

Correlation Coefficient (Zone 3, Zone 4): .89
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APPENDIX 5. continued

The mean and standard deviation calculated for the Zone 4 esti-
mates (including the zero-yield value for 1984) are close to
those derived with the present survey method: the mean being
2.3 percent higher and the standard deviation 3.5 percent lower
than the author’s estimates,

However, half of the study area is classified as Zone 3 farm-
land where average vields for the ten-year period are calcula-
ted at 514 kg/ha: about 3@ percent higher than the author’s
aggredate estimate. Thus, if the above data are accurate, the
author’s estimates have understated aggregate mean yields in
the area by about 14 percent while overstating the coefficient
of variation by about 18 percent.

2. In Hawaz village:

Nour and Nygaard (1986, pp. 115 and 131) reported on barley
yields at Jawaz village, in a Zone 4 farming area about 4@ km
east of Breda, for three seasons (1977/78, 78/79 and 79/8@).
In that period, the lowest measured seasonal rainfall was
150mm, the next highest was 249mm and the highest was 270mm,
The corresponding mean harvested barley grain yields from
village fields (unweighted for field size) were 170, 336 and
681 kg/ha, respectively. These data were derived from a
multiple-visit survey by ICARDA staff and were based on farmer

interviews, not actual measures of yield samples in farmers’
fields.

When one considers only the three mean yield values to calcu-
late a grand mean and standard deviation over time, the results
(x = 396 kg/ha, and s = 261 kg/ha) are virtually identical to
the author’s estimates. However, this remarkable coincidence
should not be given too much importance since it is based on
data specific only to ‘three years, and the location was outside
the study area.






