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A B S T R A C T

The current study focuses on applying machine learning approaches to forecast future Kharif rice yield gaps in 
eastern India while accounting for climate change implications. To achieve the United Nations Sustainable 
Development Goals (SDGs), food security must be prioritized. Rice yield has been predicted using Cubist, GBM, 
MARS, RF, SVM, and XGB machine learning methods, considering six factors: elevation, soil moisture, precipi
tation, temperature, soil temperature, and actual evapotranspiration. Climatic change scenarios were generated 
using the latest climatic Coupled Model Intercomparison Project Phase 6 (CMIP6 MIROC6) Shared Socioeco
nomic Pathways (SSP) 2–4.5 and SSP5-8.5 datasets between 1990 and 2030. Finally, machine learning algo
rithms were used to identify rice yield gaps to achieve sustainable agricultural intensification. The rice yield 
validation was completed with 1889 field-based farmer observation records. The results suggest that Mur
shidabad and Purba Bardhaman districts had very high rice yields (5.60–3.45 t/ha) when using the Cubist model 
compared to another model. The findings also reveal a poor rice-yielding zone (1.44–0.39 t/ha) in the western 
region (Purulia) and a northwestern region (half of the west of Birbhum). The Cubist and RF models’ maximum 
and minimum R2 values were 0.73 and 0.72, respectively. The R2 values were also negligible for the XGB, GBM, 
SVM, and MARS, machine learning models. Projections for rice production in 2030 indicate that the northern and 
north-eastern regions (Murshidabad and Purba Bardhaman) as well as the southeastern areas (Jhargram and 
Paschim Medinipur) have the highest yields, categorized as extremely very high (5.56–3.49 t/ha) and high 
(3.49–2.49 t/ha). A significant rice yield gap (50-40 %) was found in the center and south-east areas (Bankura, 
Jhargram, and Paschim Medinipur), the northern region (Murshidabad and Birbhum), and the western region 
(Purulia). In 2030, the north-western region (Birbhum), as well as the middle and south-eastern regions 
(Bankura, Jhargram, and Paschim Medinipur districts), had the highest proportion of high (50%–40 %) and very 
high (60%–50 %) rice yield gap. Our findings can contribute to a new viewpoint on agricultural planning and 
management for sustainable growth in the face of changing climate circumstances.

1. Introduction

Agriculture is the primary source of income for all humans, with 
agriculture employing 50 % of India’s workforce and accounting for 
17–18 % of the country’s Gross domestic product (GDP). Thus, food 
security is a crucial concern in a densely populated country. The United 
Nations has set zero hunger as a sustainable development goal (SDG) for 
greater future agricultural development. As a result, crop production 
estimates are critical for food security and achieving zero hunger. The 
importance of food security and sustainable agriculture goes beyond just 

supplying food; it involves promoting economic stability, enhancing 
social well-being, safeguarding the environment, biodiversity conser
vation, and maintaining ethical principles. Implementing sustainable 
agricultural practices allows us to build a robust food system that can 
feed the global population while conserving the planet for future gen
erations [1,2]. The current study’s methodological framework focuses 
on the present and future projection of rice crop yield to calculate yield 
gap mapping utilizing machine learning approaches on geospatial 
platforms.

Several studies have attempted to identify yield gaps by predicting 
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historical, current, and future rice crop yields [3–5]. Arumugam et al. 
[6] used the Decision Support System for Agrotechnology Transfer 
(DSSAT) to estimate Kharif rice (Oryza sativa L.) production in India 
from 2001 to 2017, considering weather data, crop mask, sowing dates, 
and irrigation information. They concentrated on the Pradhan Mantri 
Fasal Bima Yojana insurance policy, which can be used by Indian 
farmers for security reasons. Van Klompenburg et al. [7] conducted a 
thorough literature assessment for agricultural yield projections, 
considering the algorithm and features. They gathered 567 relevant 
studies from various internet databases and selected 50 relevant studies 
for further study. They identified the most utilized features for agricul
tural yield mapping, such as precipitation, temperature, and soil type. 
Senthilkumar et al. [8] evaluated rice yield gaps in 2012–13 using 
quantitative and qualitative data at the farm and field level to improve 
rice productivity in Ethiopia, Madagascar, Rwanda, Tanzania, and 
Uganda. Akhter et al. [9] forecast kharif rice yield in Gangetic West 
Bengal using the Indian Institute of Tropical Meteorology- India Mete
orological Department (IITM-IMD) extended range prediction (ERP) 
method. They examined rice yield data from ERP and the Decision 
Support System for Agro-technology Transfer (DSSAT). Finally, we 
conclude that ERP-based rice prediction data outperforms the others 
Wilson et al. [10] investigated rice crop yield prediction using a variety 
of machine learning approaches, including K closest neighbor, random 
forest, linear regression, decision tree, Xgboost, and support vector 
regression. They considered 15 distinct dataset categories, including soil 
type, organic carbon, magnesium, boron, potassium, soil temperature, 
pH, copper, iron, precipitation, and humidity, all of which are used to 
calculate rice crop output in Kerala. When compared to other ap
proaches, it was discovered that K closest neighbor (KNN) had the 
highest accuracy at 98.77 %. Debnath et al. [11] forecast future rice 
yield gap mapping in India from 1981 to 2050 using the RCP 8.5 sce
nario and the DSSAT. Under future climatic uncertainty, yields were 
found to fall by 30–60 %. Liu et al. [12] developed a transformer-based 
model to predict rice yield in the Indian Indo-Gangetic Plains from 2001 
to 2016, considering various environmental variables. They employed 
machine learning and deep learning models to predict rice crop pro
duction starting two months before rice maturity, and they created a 
dependable and simple framework for crop yield prediction. Nayek et al. 
[4] used stochastic frontier approaches to map rice yield gaps and assess 
the possibilities for irrigation water reduction in India’s Northwestern 
Indo-Gangetic Plains. However, rice production data from the Global 
Yield Gap Atlas were used to estimate yield gaps and study nitrogen-use 
efficiency in varied farmer practices. Yuan et al. [13] mapped rice yield 
gaps using meteorological and soil data from Southeast Asia, as well as 
yield data from the Global Yield Gap Atlas. They predicted future rice 
consumption based on the expected population from the medium 
fertility option (URL: https://population.un.org). It was discovered that 
a significant rice yield difference existed in Cambodia, Myanmar, the 
Philippines, and Thailand, but was much less in Indonesia and Vietnam. 
Sathya and Gnanasekaran [14] anticipate paddy production using the 
Multi-layer Representation Learning (MLRL-STM) algorithm with 
weather and soil data to preserve food security. They employed machine 
learning and deep learning approaches to estimate agricultural yield and 
suggested a hybrid model for yield prediction in Thanjavur, Tamil Nadu.

Quille-Mamani et al [15] predict rice yield across the Lambayeque 
region, Peru by Sentinel-2 imagery of 15 phenological indices from 32 
farm plots. The results showed that SVM had better performance (R2 =

0.69, RMSE = 1.23 t/ha, MAE = 1.01) than two other machine learning 
models (i.e. LR and RF). Liu et al. [16] utilized four machine learning 
models—support vector regression (SVR), partial least squares regres
sion (PLSR), back propagation neural network (BPNN), and random 
forest regression (RFR)—to estimate rice yields in China. They used 
MODIS-derived multi-temporal rice NDVI data spanning from 2001 to 
2020. Among these models, the RFR model proved to be the most ac
curate, with an R2 of 0.65, an RMSE of 388.79 kg/ha, and an rRMSE of 
4.48 %.

Most researchers concentrated on statistical rice yield prediction 
rather than spatially represented spatial distribution across the study 
areas [4,17]. Many of the researchers only used Analytical Hierarchy 
Process (AHP), fuzzy, or machine learning (ML) methods to forecast rice 
yields [18,19], there has been limited focus on achieving the desired 
accuracy for predicting the rice yield gaps in sustainable food security 
management. The study addressed the research gap in the study area 
domain by implementing rice yield gap analysis for the first time using 
various hydroclimatic parameters, based on future projections from the 
CMIP6 data sets. In this study, we address the following research 
questions: (i) What factors are associated with rice yield gap analysis? 
(ii) Does an ensemble machine learning (ML) approach satisfactorily 
perform in rice yield gap mapping? and (iii) How to CMIP6 climate 
modeling ensure the effectiveness of the yield gap methodology in 
providing insightful aids for future food security assessment in the study 
area? To answer these questions, the current study concentrated on 
identifying present and prospective rice yield gaps in Eastern India using 
CMIP6 climate modeling data and machine learning approaches. This 
study aimed to develop a scalable methodology for predicting current 
and future rice yields and yield gaps, along with their underlying causes, 
in Eastern India’s rainfed and irrigated production environments. This 
approach combined hydroclimatic data, machine learning, and ground 
information. Compare different ML approach results and assess the 
sensitivity of explanatory factors contributing to the rice yield gap using 
the multicollinearity, ordinary least squares regression (OLS), Boruta, 
and Shapley additive explanations (SHAP) analysis. Specifically, we 
compare the performance of Random Forest (RF), Extreme gradient 
boosting (XGB), Gradient boosting machine (GBM), Cubist, multivariate 
adaptive regression splines (MARS), and Support vector machine (SVM) 
regressor. Additionally, the Model for Interdisciplinary Research on 
Climate 6 (MIROC6) SSP2-4.5 and SSP5-8.5-based data were used to 
predict future rice yield gaps with precipitation and temperature data. 
This approach ensures food security, economic stability, and the liveli
hoods of farming communities in the study area.

2. Study area

We selected a study of a western lateritic region with low rainfall 
intensity to challenge rising agricultural productivity. This region pri
marily confronts climate change, characterized by high temperatures, 
limited precipitation, and decreased vegetation cover. Geographically, 
this region spans 21◦ 56′ N to 24◦ 52′ N and 88◦ 44′ E to 85◦ 45′ E. The 
research area is in the middle and southern regions of West Bengal 
(Fig. 1). The total area of this region is 37836.5 km2. It consists of 8 
districts: Murshidabad, Birbhum, Purba Bardhaman, Paschim Bardha
man, Bankura, Purulia, Jhargram, and Paschim Medinipur. Mur
shidabad district is in the heart of West Bengal, with an average 
elevation of 10 m (30 feet) above mean sea level (MSL). The climate in 
this district is humid. This district is separated into two parts by the 
Bhagirathi River, which flows from north to south. The western half, 
known as ‘Radh’, has undulating topography and strong reddish clay 
soil, while the eastern part has extensive marshes and an old riverbed. 
The eastern section, known as ‘Bagri’, has fertile alluvial soil that is ideal 
for farming. Birbhum district is also known as “The Land of Red Soil”. 
The average elevation in this district is 230 feet. The western section of 
the district is located under the Chota Nagpur Plateau and gradually 
descends to the lush alluvial plains in the east District Survey Report of 
Birbhum [20]. The Ajay, Bakreshwar, Brahmani, Bansloi, Dwarka, 
Hinglo, Kopai, and Mayurakshi rivers flow from east to west in the 
Birbhum district.

The climate is milder on the eastern side compared to the western 
side. Purba Bardhaman district is known as the “Rice Bowl of West 
Bengal”. This district’s average elevation is 30 m (131 feet). The western 
section of the district has old alluvial soil, whereas the eastern part has 
new alluvial soil. This location is in the hot and humid tropical climate 
zone. Paschim Bardhaman district is situated on the northern bank of the 
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Damodar River. The district has an elevation of 40 m, with a somewhat 
higher relative relief in the western half compared to the northeast. 
However, the slope is mild from west to east, and the climate is tropical, 
both rainy and dry. Laterite Soil is found here that is very permeable, 
low in organic matter, and acidic. Drought-prone areas Bankura District 
is in the western section of West Bengal. Damodar The river flows along 
the district’s northern boundary. This area consists of undulating up
lands that progressively descend from the Chota Nagpur Plateau. The 
climate is usually dry and hot in summer, with mild temperatures in 
winter. This location has red and lateritic soil and an elevation of 78 m 
(256 feet). Farmers in this district rely heavily on monsoon rains, and 
irrigation facilities are few. Climate change is seen in the westernmost 
district of West Bengal.

Purulia is located on the eastern slope of the Chotonagpur Plateau. It 
has an average elevation of 228 m (748 feet). Purulia’s laterite soil in
cludes iron and varies in acidity, alkalinity, and clay type. This district 
endured hot and humid weather. The district is divided into two phys
iographic areas: the higher plateau, which includes the Baghmundi and 
Ajodhya ranges in the west, and the lower plateau, which spans the 
eastern half. The Baghmundi region has an average altitude of 400–600 
m, whereas the Ajodhya range contains peaks above 600 m. Due to 
undulated geography, over 50 % of precipitation is lost as runoff. Several 
rivers run through the district, including Damodar, Dwarakeswar, 
Kangsabati, Kumari, Silabati (Silai), and Subarnarekha. Small dams such 
as Burda, Futiyary, Gopalpur, Murguma, and Pardi are used to irrigate 
agricultural fields. Jhargram District is in West Bengal’s humid and 
tropical region, at an average elevation of 81 m above MSL in the red 
and lateritic zone. This district is located on the Chota Nagpur Plateau, 
with a gentle eastward slope. This district is situated between the Kan
gasabati River in the north and the Subarnarekha River in the south. East 
Medinipur is in West Bengal’s southernmost district. It is part of the 
lower Indo-Gangetic Plain and Eastern Coastal Plains, which are divided 
into two parts: flat plains to the west, east, and north, and coastal plains 
to the south. This area is primarily made up of coastal and younger al
luvial deposits. The district’s elevation is within 10 m of MSL. Tropical 
wet and dry climates are viewed in this location.

3. Material and methods

3.1. Data used

3.1.1. Sampling of crop yield
The kharif rice crop yield (t/ha) was collected from 1889 agricultural 

fields during the survey work (2022–2023) in post-harvesting periods. 
Before the main survey, a pilot test was conducted with a small group of 
respondents (including farmers, community members of various ages, 
fertilizer and seed stores, local senior citizens, and government officials) 
to identify and address any issues with the questionnaire and potential 
outcomes. This helps us to design a better survey framework. The field 
data was gathered during a field survey using a handheld GPS device to 
geo-tag rice production areas in Eastern India (Fig. 1). The survey 
collected extensive data on rice yield (in tons per hectare) and input 
usage from the largest plot cultivated by each farmer in two consecutive 
Kharif seasons, spanning from 2022 to 2023. During the field survey, the 
varieties of Kharif rice species growing in the study namely Swarna, 
Ratna, Lalat, Varam, IR36, IR41, MTU7029, Badsha bhog, Dhanaraj, 
Chaitali, Maharaj, Minikit, Gtka, Gobindo bhog etc. A random sampling 
analysis has been steered with a handheld GPS (Garmin Ltd., Olathe, KS, 
USA) and detected the coordinates at each sampling location. Use 
random sampling techniques to select farms or plots for data collection. 
This reduces the likelihood of systematic biases that could skew results. 
During the survey, detailed information about rice yield information 
was gathered, including aspects like farming methods, crop disease, 
fertilizer input, irrigation plans, soil conditions, soil moisture impact of 
climatic hazards, market trends, and more, integrating the insights and 
experiences of local farmers for in-depth analysis. The study involved 
visiting multiple locations in the area to gather samples and document 
the experiences and observations of local farmers about recent changes 
in their crop rotation. In this study, outlier detection was performed 
through box plot analysis. The statistical analysis of rice yield in the 
study area revealed that the average yield is 1.96 (t/ha), with a standard 
deviation of 1.48. The minimum recorded yield was 0.017 (t/ha), while 
the maximum yield reached 6.75 (t/ha). This crop yield database was 
employed as the dependent variable for the rice yield gap prediction 
(RYP) analysis. For the ML cross-validation analysis, the yield samples 
are subset into training (70 %–1322 sample location) and testing (30 %– 
567 sample location) sets.

After fitting the predictive models to both observed and predicted 
yields, the predictors were employed to generate actual yield (Ya) 

Fig. 1. Location of the study area map.
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predictions at the plot level, followed by the estimation of potential yield 
(Yp). The yield gap (Yg) for each farmer was calculated by subtracting 
the actual yield (Ya) from the potential yield (Yp), which was simulated 
using vegetation indices (Yg = Yp - Ya) [3]. Subsequently, we calibrated 
and validated all MLs to predict yield using geo-environmental and 
hydroclimatic data over the study region. We also identify the key de
terminants of the yield gap based on the importance values of the 
variables.

3.1.2. Geo-environmental parameters
Six environmental parameters were applied, based on previous 

literature [21–25] expert perceptions, and the specific surroundings of 
the study domain. The six effective parameters are elevation, soil 
moisture (sm), precipitation (Pr), temperature (temp), soil temperature 
(stemp), and Actual Evapotranspiration (aet) for spatial prediction of 
RYP mapping (Supplementary Fig. 1). Table 1 shows the dataset 
description and sources for the RYP mapping analysis.

In assessing the effects of climate change, the most frequently used 
factors are temperature and precipitation [22,24,26]. Consistent with 
previous research, this study focuses on precipitation and temperature 
as the primary climatic parameters. The information on Pr, temperature, 
aet, and sm, was obtained from the TerraClimate datasets (1958–2022) 
through the Google Earth Engine (GEE) cloud. All the climatic variables 
within the study boundaries were averaged then the IDW (Inverse Dis
tance Weightage) interpolated method was applied with the ArcGIS 
software v10.7. Topographical variation of the study area extracted 
from the Shuttle Radar Topography Mission (SRTM) DEM data 
(USGS/SRTMGL1_003, 30m spatial resolution). The stemp data were 
derived from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Climate Reanalysis (Temperature of the soil in layer 2 data
bases at 15–30 cm depth (1958–2022). All the assigned six 
geo-environmental parameters are resampled (30m × 30m) with the 
bilinear interpolation method in R software v.3.4.2 [27,28].

Comprehending crop yield and water demands will adapt to future 
climatic conditions on a local level is crucial for formulating more ac
curate and effective adaptation approaches for climate resilience agri
cultural domain [29,30]. The current study employed the temperature 
and precipitation data with MIROC6 global circulation model datasets 
from project phase 6 of the Coupled Model Intercomparison Project 
(CMIP6) (Supplementary Fig. 2). Shared Socioeconomic Pathways 
(SSPs) of future periods spanning 1990 and 2030 under SSP2-4.5 and 
SSP5-8.5 scenarios were employed to crop yield prediction as well as 
RYP mapping in the future.

3.2. Methodology

The research methodology is summarized as follows: Initially, the 
study utilized a crop yield database alongside six crop yield predictors to 
prepare datasets for training, and testing phases of machine learning 
(ML) models, preceded by a statistical Ordinary Least Square Regression 
(OLS), multicollinearity and Boruta analysis. Subsequently, RYP maps 

were produced by analyzing the spatial relationships between crop yield 
predictors and crop yield coupled with evaluating the ML model’s ac
curacy through selected metrics (i.e. R2, RMSE, MAE, and MSE).

Lastly, the most effective model was identified, and an in-depth 
analysis of the crop yield predictors’ significance was conducted using 
an explainable AI (XAI) technique, specifically Shapley Additive exPla
nations (SHAP). The overall methodological framework is shown in 
Fig. 2.

3.2.1. OLS and VIF analysis
The generalized linear modeling approach utilized in this research is 

known as ordinary least squares (OLS) regression. It is designed to model 
a response or dependent variable as yield, offering a comprehensive 
prediction model. This method permits the inclusion of either a single or 
multiple explanatory variables in the RYP analysis. The mathematical 
calculation of the OLS was executed with Eq.1 [27,28]. The variation 
inflation factors (VIF) justified the collinearity check of the yield pre
dictors. Moreover, the study considered the cut-off of VIF score strictly 
<5. 

y= βo + β1x1 + β2x2 + β3x3…βnxn + ε …1 

where y denotes the dependent parameters; βo represents the intercept; 
β1, β2, β3 … βn are the coefficient score of the independent parameters x 
(x1, x2, x3 … xn); and ε denote the error term.

3.2.2. Boruta feature selection analysis
This research employed random forest-based Boruta feature selec

tion techniques to assess the efficacy of the proposed RYP model. The 
Boruta algorithm performed 10 iterations in 4.938149 s through R 
software v.3.4.2. through random forest model. The ranking of each 
predictor is confirmed with the mean importance value [35].

3.2.3. Machine learning regression application
Numerous research works have highlighted the significance of ma

chine learning as a key instrument in supporting decision-making for 
crop yield predictions [36–38]. Machine learning serves as an invaluable 
aid to farmers by providing comprehensive advice and insights into crop 
management, thereby aiding in minimizing agricultural losses. The 
machine learning models examined in this study include the Random 
Forest (RF), Extreme gradient boosting (XGB), Gradient boosting ma
chine (GBM), Cubist, multivariate adaptive regression splines (MARS), 
and Support vector machine (SVM) regressor respectively. The selection 
of these methodologies was influenced by the quantitative characteris
tics of the predictive data and the extent of the dataset involved. All the 
employed ML model tuning parameters are summarized in Supple
mentary Fig. 3 and Supplementary Table 1.

3.2.4. Random forest (RF)
The RF algorithm stands out as a key supervised machine learning 

technique, adept at handling both classification and regression chal
lenges. The Random Forest model is a powerful and versatile tool for 

Table 1 
Description of data sources for rice crop yield prediction.

Parameters Group Description Source Reference

Elevation (degree) SRTM DEM (30 m) (URL: usgs.gov.in) [31]
Soil temperature (◦C) ECMWF Climate Reanalysis (Temperature of the soil in layer 2), 11132m, (15–30 cm 

depth), (annual average 1958–2022)
(URL: https://cds.climate.copernicus.eu) [32]

Soil moisture (mm) IDAHO_EPSCOR/TERRACLIMATE, 4638.3 m, (annual average 1958–2022), (15–30 cm 
depth)

(URL: https://www.climatologylab.or 
g/terraclimate)

[33]

Precipitation (mm) IDAHO_EPSCOR/TERRACLIMATE, 4638.3 m, (annual average 1958–2022)
Temperature (◦C) IDAHO_EPSCOR/TERRACLIMATE, 4638.3 m (annual average 1958–2022)
Actual Evapotranspiration 

(mm)
IDAHO_EPSCOR/TERRACLIMATE, 4638.3 m (annual average 1958–2022)

CMIP6 Precipitation (mm) NASA/GDDP-CMIP6, 27830 m, (annual average 1990–2030), (ssp245, ssp585) (URL: https://registry.opendata. 
aws/nex-gddp-cmip6/)

[34]
CMIP6 Temperature (◦C)
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various predictive modeling tasks with there accuracy, robustness to 
overfitting, handling of missing values, feature importance, variability, 
scalability, etc. Its ability to produce high-accuracy predictions and 
robustness against overfitting make it a popular choice among data 
scientists. It operates by employing a multitude of decision trees (DT), 
leveraging the bootstrap technique, and implementing aggregation [39]. 
It starts at the base and navigates through various bifurcations based on 
variable outcomes, ultimately culminating at a leaf node that reveals the 
final decision. In these trees, a starting feature, say Feature A, initiates a 
split based on a predefined criterion. Depending on the response being 
affirmative or negative, the tree follows a corresponding path, repeating 
this process until it arrives at the leaf node where the decision is final
ized. Bootstrapping involves randomly selecting data subsets for multi
ple iterations and variables. The aggregation, or ensemble approach, 
combines multiple models trained on the same dataset, averaging their 
outputs to enhance the overall predictive or classification accuracy. In 
this study, the RF model was configured with the following parameters: 
mtry set to 1, number of trees set to 500, proximity enabled, and fit Best 
disabled. However, its complexity, computational requirements, and 
potential biases must be considered when selecting it for specific ap
plications. Understanding its strengths and limitations helps in effec
tively utilizing the RF model to achieve reliable and interpretable 
results.

3.2.5. Extreme gradient boosting (XGB)
The XGB algorithm is an advanced tree optimization ML tool that has 

gained widespread usage in various data analysis domains. Uniquely 
intended as an applied gradient-boosting machine, especially for 
regression and classification trees. It employs the boosting concept. This 
concept integrates the predictions of weak learners through additive 
training methods to form a robust learner, aiding in preventing over
fitting and enhancing mathematical proficiency. The XGB architecture, 
demonstrating the simplification of objective functions by combining 
prediction and regularization terms, minimizes loss function while 
maintaining optimal processing speed [40]. XGB is an advanced 
implementation of the gradient boosting framework designed to opti
mize both performance and efficiency. Here’s the rationale behind using 
the XGB model: Gradient Boosting Framework, Regularization func
tionality, capabilities of missing values handling, scalability, and custom 
Objective functions. Its ability to handle large datasets and deliver ac
curate predictions makes it a popular choice for crop yield prediction 
analysis. However, its complexity, computational requirements, and the 
need for careful hyperparameter tuning must be considered when 
choosing it for specific tasks. In this study, the XGB model was tuned 
using the following optimal parameters: eta:0.3, maximum depth: 3, 
gamma: 0.001, coal sample by tree: 0.8, minimum child weight:1, sub
sample:1 and objective function:reg: squared error respectively.

3.2.6. Gradient boosting machine (GBM)
The GBM emerges as a highly influential machine learning algo

rithm, garnering significant attention across diverse environmental ap
plications such as agriculture, climatology, and soil studies [41,42]. 

Fig. 2. Overall methodological framework for rice yield prediction.
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GBM is a machine learning technique that builds predictive models in a 
stage-wise fashion, combining the predictions of multiple weak learners 
(typically decision trees) to create a strong learner. Here’s the rationale 
behind using the GBM model: sequential learning ability, gradient 
descent optimization funncanality, regularization, and ensemble 
learning capability.

Renowned for its robust decision-making capabilities using tree-like 
structures, GBM is particularly recognized for its effectiveness in crop 
yield estimation, acknowledged by experts in the field. An inherent 
advantage of GBM lies in its versatility, capable of addressing both 
regression and classification tasks, thus facilitating effective decision- 
making in various contexts. The ensemble learning algorithm adopts 
an iterative approach, sequentially building upon weak trees, thereby 
progressively enhancing the performance of previous models. This 
iterative process results in powerful predictive models that excel in 
delivering accurate estimates. However, its computational demands, 
sensitivity to noisy data, and the need for careful parameter tuning 
should be considered when applying GBM to real-world problems. The 
current study utilized the following parameters for GBM modeling i.e., 
n.trees: 150, interaction. depth: 3, shrinkage: 0.1, and n.min
obsinnode:10. A gradient with loss function: gaussian boosted model, 
and iterations:150.

3.2.7. Cubist
The Cubist machine-learning nonparametric analysis method is an 

approach rooted in the construction of regression trees. Initially, a tree is 
constructed by defining rules that partition the data into reasonably 
homogeneous groups concerning the variable of interest, such as pro
ductivity, about the predictor variables. According to Ref. [43], the 
prediction-oriented regression model referred to as the cubist model 
stands out for its distinctive approach. A key advantage of the cubist 
method lies in its incorporation of multiple training committees, a 
feature designed to balance case weights effectively. The Cubist model is 
a rule-based machine learning technique that combines regression trees 
with linear models to make predictions. Here’s the rationale behind 
using the Cubist model: rule-based approach, ensemble learning, and 
variable selection. This model has various limitations i.e., heavily de
pends on parameter settings, is limited for regression tasks, and is 
computationally intensive. The Cubist model offers a blend of inter
pretability and predictive accuracy, making it suitable for scenarios 
where understanding the decision-making process is as important as 
accurate predictions. While it excels in transparency and non-linear 
relationship modeling, researchers and practitioners should consider 
its complexity, parameter sensitivity, and suitability for specific tasks 
when choosing it for machine learning applications. This study utilized 
different Cubist tuning parameters for analyzing the rice yield gap, 
including committees: 20, neighbors: 9, and several rules per committee: 
18, 13, 12, 12, 14, 8, 17, 12, 10, 10, 12, 8, 13, 12, 13, 11, 12, 10, 14, 10 
for rice yield gap analysis.

3.2.8. Multivariate adaptive regression splines (MARS)
MARS, a powerful technique, excels in creating a strong predictive 

model for a response variable [44]. It is particularly useful in agricul
ture, where it estimates yields or other characteristics based on agro
nomic traits. Both simple and multiple linear regression methods are 
employed for determining plant traits. However, it’s important to note 
that deviating from distributional assumptions can negatively impact 
the reliability of these methods. MARS is a non-parametric regression 
technique that builds models by partitioning the input space into regions 
characterized by linear functions. It offers a balance between flexibility 
in modeling non-linear relationships and interpretability through 
segment-based linear models. The rationale behind using the MARS 
model includes piecewise linear modeling, adaptive basis functions, and 
automatic interaction detection. While its strengths include adaptability 
and transparency, researchers and practitioners should consider its 
limitations, such as sensitivity to noise, overfitting risk, limited to 

regression, and computational demands, when applying MARS to 
real-world regression problems. Understanding these trade-offs is 
essential for effectively leveraging MARS to derive meaningful insights 
from data while ensuring robust model performance. This study 
employed the various best tuning paramtersfor MARS modelling 
including, nprune: 14 and degree:1.

3.2.9. Support vector machine (SVM)
SVM is a supervised machine learning method employed to analyze 

the linear association between two continuous variables. The rationale 
behind using the SVM model includes maximum margin classifier, 
kernel trick for non-linear separability, regularization parameter, and 
effective in High-dimensional spaces. The core concept of SVM involves 
identifying an optimal fit line while maintaining the fitting error within 
a specific threshold. These optimal fits aim to estimate the best value 
within a defined hyperplane margin. In SVM, the most effective hyper
plane is the one that encompasses the maximum number of points [45]. 
Its strengths lie in its robustness to overfitting, versatility in kernel 
functions, and ability to find global optimum solutions. However, 
practitioners should consider its computational intensity, sensitivity to 
kernel choice, and limitations in interpretability when applying SVMs to 
real-world problems.In this study the different hyperparameter were 
used i.e., epsilon: 0.1 cost C:1, kernel: Gaussian Radial Basis function,: 
sigma:0.469, number of Support Vectors: 709, and objective function 
value: − 268.358.

3.2.10. Model validation
In this study, the 10-fold cross-validation was considered for their 

model validation efficiency. The various statistical metrics namely mean 
squared error (MSE), root mean squared error (RMSE), mean absolute 
error (MAE), and R2 employed for evaluating ML regression models. 

MSE =
1
n
∑n

i=1
(yi − ŷi)

2 (2) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(yi
∑

ŷi)
2

n

√

(3) 

MAE =
∑n

i=1

|yi − ŷi|

n
(4) 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − yi)

2
(5) 

where in Equations (2)–(5), y represents the predicted yield, and ŷ is the 
observed yield.

3.2.11. SHapley additive exPlanations (SHAP) analysis
Assessing feature importance for all machine learning models 

involved utilizing the Tree Explainer from the shape package in Python 
v3.7.0., aiming to identify the most influential predictors for RYP 
analysis. The Tree Explainer method utilizes Shapley values to portray 
both the global importance of features and their ranking, as well as the 
local impact of each feature on the model output. Utilizing SHAP, an 
interpretable machine learning (IML) approach grounded in game the
ory [46], the study employed this methodology to ascertain the contri
bution of each variable to the modeled yield across the study area. The 
variable causing the most significant decrease in yield at each point was 
identified and mapped throughout the study area, with the spatial extent 
represented by each variable quantified. Additionally, SHAP values for 
each predictor variable were extracted and mapped for a case study 
field. This mapping demonstrated the magnitude of the impact of each 
variable on yield within a spatial context, presented in easily 
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interpretable units (t/ha). This analysis was conducted on the model 
predictions using a representative sample from the testing dataset.

4. Results

4.1. OLS and multicollinearity test

The precipitation, temperature, and elevation demonstrate a high 
level of 99 % (p < 0.001), agreement, reaching regarding rice yield 
prediction in the study area. On the other hand, aet, sm and stem exhibit 
significance levels of 95 % (p < 0.05). Statistical validation of these rice 
yield predictors was conducted using ML analysis. According to the 
multicollinearity analysis (Table 1), it is found that the elevation factor 
has the maximum score of variance inflation factor (VIF) (3.43) while 
the minimum value of VIF is temperature (1.10) (Table 2). This result 
indicates that, there is no significant collinearity issues among the pre
dictors for rice yield gap analysis. Allowing all 6 RYPs to be considered 
for utilization in the Rice Yield Prediction (RYP) modeling process.

4.2. Boruta feature selection

According to the Boruta feature selection results (Fig. 4), stemp 
factors achieved maximum mean importance (55.30) (Table 3). Finally 
based on that result, all the crop yield parameters are confirmed for the 
parameters sensitivity analysis.

Various ML techniques (cubist, GBM, MARS, RF, SVM, and XGB) 
were used to predict Kharif (monsoon) rice yield in Murshidabad, 
Birbhum, Paschim Bardhaman, Purba Bardhaman, Bankura, Purulia, 
Paschim Medinipur, and Jhargram districts of West Bengal, considering 
five parameters such as elevation, soil temperature, soil moisture, actual 
evapotranspiration, precipitation, and temperature. Future rice yield 
projection was made using Coupled Model Intercomparison Project 
Phase 6 (CMIP6) climate model-based precipitation and temperature 
data under SSP2–4.5 and SSP5-8.5 by ML. Finally, current, and pro
jected Kharif rice yield gap mapping has been constructed using simu
lated and field-based rice yield data. Furthermore, in 1889, farmers were 
surveyed using data used for ML model training (70 %) and testing (30 
%) purposes.

4.3. Analysis of rice yield predictions

The six ML models including cubist, GBM, MARS, RF, SVM, and XGB 
were used to calculate the current Kharif rice yield for 2023. The field- 
based Kharif rice yield data were used for calibration and validation 
purposes. The findings indicate that Murshidabad and Purba Bardhaman 
districts have exceptionally good rice yields due to adequate water 
availability. Using the Cubist model, we noticed that the highest level of 
rice yield (5.60–3.45 t/ha) is seen in the northern and north-eastern 
regions (Murshidabad, East Burdwan districts, and some of the north- 
eastern and southern parts of Birbhum district, as well as some of 
West Burdwan district), and partially in the western and south-eastern 
regions (western part of West Burdwan and the border area of Jhar
gram and East Medinipur Districts). Rice yields are high in the majority 

of the south and south-eastern regions (Jhargram, Paschim Medinipur 
districts, and a small piece of the border area between Jhargram and 
Bankura districts). It can be seen in the northern region (some of the 
western and northern parts of Murshidabad, as well as the eastern and 
southern parts of Birbhum), the eastern region (the eastern and southern 
parts of East Burdwan, the northern part of Bankura), and a very small 
portion of the western region. This study area has a scattered distribu
tion of moderate rice yields (2.37–1.44 t/ha), similar to the eastern, 
southern, and western parts of Birbhum, some of West Burdwan, 
partially eastern and north-western parts of Bankura, scattered distri
bution of Jhargram and the northern part of East Medinipur, and scat
tered distribution of Purulia districts. The western region of the study 
area (overall Purulia and partial western part of Birbhum) is in a low 
rice-yielding zone (1.44–0.39 t/ha), while the middle portion of the 
study area (overall Bankura districts) and a portion of the north-western 
region (western part of Birbhum district) have very low rice yields 
(0.39–0.10 t/ha).

Using GBM model, we noticed that very high rice yields (5.60–3.45 
t/ha) are observed in the maximum portion of the northern and north- 
eastern regions (Murshidabad, East Burdwan districts, and partially 
viewed north-eastern and southern parts of Birbhum), and very few 
portions of the western region (western part of West Burdwan), and 
southern region (border part of Jhargram and East Medinipur districts) 
(Fig. 3). The south-eastern region (overall East Medinipur district and 
partially Jhargram district) has the highest proportion of high rice yields 
(3.45–2.37 t/ha), while the north-eastern region (eastern and western 
parts of Murshidabad, scattered distribution of East Burdwan, partially 
eastern and south-eastern parts of Birbhum), and western region 
(western part of West Burdwan districts) are scattered distributed under 
high rice yield zones. The moderate rice production (2.37–1.44 t/ha) is 
the result of discrepancies in all districts save the northeastern region. In 
this study area, western and north-western region (overall Purulia dis
trict and partially Birbhum district, scattered West Burdwan district) 
and south-middle part (partially scattered distribution of Bankura dis
trict, some of northern part of Jhargram and East Medinipur districts) of 
the study area show that low rice yield (1.44–0.39 t/ha) and in the 
middle portion (overall Bankura) of the study area and partially north- 
western region (west Birbhum districts, scattered distribution.

Using the MARS model, we discovered that the highest level of rice 
yield (5.60–3.45 t/ha) was observed in the north-eastern (partial north- 
eastern Murshidabad and very low portion of eastern East Burdwan) and 
south-eastern regions (border part of Jhargram and East Medinipur 
districts and partially southern part of East Medinipur districts). Another 
observation was that the north-eastern and eastern regions (the majority 
of Murshidabad and East Burdwan), as well as the western half of West 
Burdwan and the southern section of East Medinipur and Jhargram 
districts, have high rice yields (3.45–2.37 t/ha). The moderate rice yield 
(2.37–1.44 t/ha) exists in the northern region (scattered distributed of 
Murshidabad, the eastern and southern part of Birbhum), the eastern 
region (south-eastern and south-western part of East Burdwan), the 
southern eastern region (northern and eastern part of East Medinipur, 
the northern portion of Jhargram), and some of the western region. Low 
rice yield (1.44–0.39 t/ha) is observed in the middle and western and 
north-western regions of the study area (maximum portion of Purulia 
and Birbhum districts, average distribution of Bankura district, very low 
portion of West Burdwan), as well as in some of the south-eastern re
gions (northern and middle portion of East Medinipur). Finally, the 
central area (generally Bankura) and a small fraction of the western and 
north-western regions (partially western and southern Purulia and a 
very small amount of the south-western portion of Birbhum districts) 
have very poor rice yields (0.39–0.10 t/ha).

In this model (RF), we observed that the highest level (5.60–3.45 t/ 
ha) of rice yield area viewed in the northern and north-eastern region 
(maximum portion of Murshidabad, overall East Burdwan except some 
of the southern part and north-western part, some of the southern part of 
Birbhum), and a partial portion of the western region (western part of 

Table 2 
Results for OLS and VIF analysis in crop yield prediction

Variable VIF β std err t P>|t|

temp 1.10 0.397 0.041 9.744 0.00***
aet 1.98 − 0.086 0.030 − 2.894 0.004**
ele 3.43 0.004 0.001 6.668 0.00***
pr 1.65 − 0.093 0.006 − 14.569 0.00***
sm 2.49 0.001 0.001 3.054 0.002**
stemp 1.58 − 0.001 0.001 − 3.077 0.002**
R-squared = 0.79, F-statistic = 1098, DurbinWatson = 1.24, Prob > chi2 = 0.002

β ~Coefficient; t ~ t-test std err ~ Standard error, Robust standard errors~ *p <
0.05, **p < 0.01, and, ***p < 0.001,F ~ Statistical, R2~ Linear regression.
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West Burdwan) and also southern region (border of Jhargram and East 
Medinipur, some of the eastern part of East Medinipur). We see that high 
rice yield (3.45–2.37 t/ha) is viewed in the maximum portion of the 
south-eastern region (overall East Medinipur and Jhargram), and 
partially in the eastern region (southern part of East Burdwan), western 
region (very few of the northern part of Purulia, scattered distribution of 
West Burdwan), north-eastern region (east Murshidabad, some of the 
western part of Murshidabad), and north middle region (eastern and 
southern part of Birbhum). We also notice that intermediate rice yields 
(2.37–1.44 t/ha) are dispersed, except for the northeastern region. The 
study area includes a low rice-yielding zone (1.44–0.39 t/ha) in the 
western region (overall Purulia) and a north-western region (the west
ern portion of Bibhum), with some spread throughout Bankura and 
eastern Birbhum districts. Finally, in the middle of the research area 
(Bankura districts) and a portion of the north-western and western re
gions (south-western part of Birbhum and some of West Burdwan), rice 
yields are quite low (0.39–0.10 t/ha).

In the SVM model, we observed that the highest level (5.60–3.45 t/ 

ha) of rice yields are viewed in the northern and north-eastern region 
(overall Murshidabad and maximum portion of East Burdwan, some of 
north-eastern and south-eastern part of Birbhum district) and partially 
situated in the western region (western part of West Burdwan) and 
south-eastern region (border of Jhargram and East Medinipur and some 
of south-eastern part of East Medinipur). We see that high rice yields 
(3.45–2.37 t/ha) are viewed in the maximum portion of the southern 
and south-eastern region (a maximum portion of East Medinipur and the 
southern part of Jhargram), and partially viewed in the eastern region 
(southern, south-eastern part, and northern part of East Burdwan), 
western region (scatter distribution of West Burdwan), north-eastern 
region (very few of east Murshidabad), and north-middle region 
(north-eastern and south-eastern part of Birbhum. And we also see that 
moderate types of rice yield (2.37–1.44 t/ha) are viewed north-western 
region (middle portion of the north to south Birbhum districts), southern 
and south-eastern region (northern and some of scattered distributed 
East Medinipur and Jhargram districts), and scattered distributed 
everywhere (middle of West Burdwan, western and south-eastern part of 

Table 3 
Boruta feature importance summary for crop yield parameters selection

Variable meanImp medianImp minImp maxImp normHits decision

temp 34.18584 33.91949 32.72801 36.8138 1 Confirmed
aet 38.58622 38.62706 35.85058 41.40367 1 Confirmed
ele 51.5107 51.67904 48.56954 53.77524 1 Confirmed
pr 53.16091 53.16332 51.37621 55.0515 1 Confirmed
sm 37.44425 37.68965 34.83757 40.30518 1 Confirmed
stemp 55.30331 55.43543 50.87711 57.75792 1 Confirmed

Fig. 3. Rice yield mapping by six machine learning techniques of 2023.
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Purulia, northern part of Bankura, and southern part of East Burdwan), 
except the north-eastern region (maximum portions research area has 
poor rice producing zones (1.44–0.39 t/ha) in the western region 
(overall Purulia), central region (scattered distributed of Bankura, 
northern part of East Medinipur), north-western region (western part of 
Bibhum), and eastern region (southern part of East Burdwan). Finally, in 
the central portion of the research area (Bankura districts) and a portion 
of the north-western region (some western parts of Birbhum), rice yields 
are extremely poor.

In the XGB model, we observed that the highest level (5.60–3.45 t/ 
ha) of rice yields are viewed in the northern and north-eastern regions 
(Murshidabad, East Burdwan, and a few areas of north-eastern and 
southern parts of Birbhum districts) and partially distributed in the 
south-eastern region (border region of Jhargram and Purba Medinipur 
and some of the eastern part of Purba Medinipur), western region 
(western part of Paschim Bardhaman) (Fig. 3). And we observed that 
high rice yield (3.45–2.37 t/ha) is viewed in the maximum portion of the 
southern and south-eastern regions (maximum portion of Purba Medi
nipur and some of Jhargram), and partially in the western region 
(northern part of Purulia and scatter distribution of west of Paschim 
Bardhaman), and the eastern region (scattered distributed of Purba 
Bardhaman, Murshidabad, the eastern and southern part of Birbhum). 
The moderate forms of rice yield (2.37–1.44 t/ha) are scattered 
throughout the research area, with the highest proportion observed in 

the south-eastern region (Jhargram and Purba Medinipur) and the 
north-western region (eastern and western Birbhum). Low rice-yielding 
zones (1.44–0.39 t/ha) can be found in the western and north-western 
regions (overall Purulia, the western part of Birbhum, and scattered 
distributed Paschim Bardhaman), as well as in the middle region (scat
tered distributed Bankura) and the south-eastern region. Finally, very 
low rice yields (0.39–0.10 t/ha) are observed in the middle portion of 
the study area (overall Bankura districts) and a small portion of the 
scattered western and north-western regions (some eastern part of 
Purulia, the middle portion of Paschim Bardhaman, and scattered dis
tribution of Birbhum districts).

Except for the MARS model, the cubist, RF, GBM, XGB, and SVM 
models all exhibit a similar tendency for high rice yields. High rice yields 
were also seen in several areas of Murshidabad, Purba Bardhaman, 
Paschim Medinipur, and Jhargram districts. Rice yields were reported to 
be moderate in the eastern half of Birbhum and relatively scattered areas 
of Purulia, Paschim Medinipur, and Jhargram districts. Low rice yields 
were also discovered in western Birbhum, entire Purulia, and very minor 
portions of Paschim Medinipur and Jhargram districts. Water stress 
caused extremely low yields in tiny sections of Birbhum, Purba Bard
haman, and entire areas of Bankura, as well as very small parts of Purulia 
districts. The highest and minimum R2 values for the cubist and RF 
models were found to be 0.73 and 0.72, respectively (Fig. 4a & d). The 
R2 value was likewise found to be negligible for the XGB (0.710), GBM 

Fig. 4. Scatter plots representation (a) cubist, (b), GBM, (c) MARS (d) RF, (e) SVM and (f) XGB for validation purposes.
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(0.708), MARS (0.690), and SVM (0.700), machine learning models 
(Fig. 4b, c, 4e, & 4f). The RMSE values for cubist and MARS models 
ranged from 0.79 to 0.97. In the model predictive accuracy as the 
maximum MSE value showed in the MARS model around 0.952, fol
lowed by SVM (0.800), GBM (0.767), XGB (0.746), RF (0.707), and 
Cubist (0.637). According to the MAE analysis, the highest value was 
shown by the MARS model at approximately 0.719, followed by XGB 
(0.625), GBM (0.618), SVM (0.592), RF (0.569), and Cubist (0.543). 
Finally, the Cubist model achieved the highest R2 (0.730) and the lowest 
RMSE (0.798) values, indicating it is the best model for predicting rice 
yield compared to the other models.

4.4. Analysis of future rice yield predictions

Six machine learning models were used to forecast future rice yields 
based on five factors. The CMIP6-based precipitation and temperature 
data were used to generate projected rice yields for SSP2-4.5 and SSP5- 
8.5. Shared Socioeconomic Pathways (SSPs) explain future society’s 
socioeconomic evaluation, adaptation, vulnerability, and natural eco
systems [47]. This study considers SSP2-4.5 and SSP5-8.5, which 
involve balance and extreme weather conditions. Cubist, GBM, RF, SVM, 
and XGB, excluding MARS, revealed very high Kharif rice yields in 
Murshidabad, Purba Bardhaman, and a tiny portion of Paschim Medi
nipur and Jhargram districts under SSP2-4.5 of 2030 (Fig. 5). It was also 
discovered that very high Kharif rice yields occurred in tiny parts of 
Murshidabad, the majority of Purba Bardhaman, and very small parts of 
Paschim Medinipur and Jhargram under SSP5-8.5. poor and very poor 
Kharif rice yields were discovered in various portions of Birbhum, as 

well as in the majority of Bankura and Purulia districts, employing all 
machine learning methods of 2030 under SSP2-4.5 and SSP5-8.5, 
respectively. Moderate Kharif rice output was observed in tiny areas 
of Murshidabad, Birbhum, Paschim Bardhaman, Paschim Medinipur, 
and Jhargram districts. However, ML-based results are widely accepted 
for future rice yield estimates using several statistical markers (e.g., R2, 
RMSE, MAE).

Using several machine learning approaches, we examined this 
research area and forecasted rice yield (t/ha) under SSP2-4.5 in 2030. 
We revealed that in the Cubist, GBM, MARS, RF, SVM, and XGB ap
proaches, the highest portion of rice yield is extremely high (5.56–3.49 
t/ha) and high (3.49–2.49 t/ha) in the northern and north-eastern re
gions (Murshidabad and Purba Bardhaman) and southeastern region 
(Jhargram and Purba Medinipur). In this region, we show that the 
output of rice yield will increase under SSP2-4.5 in 2030 due to climate 
change, adequate water supply, the use of new high-yielding rice vari
eties, better pest management, proper irrigation systems, the use of good 
fertilizer, good seeds, advanced tools, and machinery, developing farmer 
literacy and yielding skills, and so on. There are moderate rice yields 
(2.49–1.67 t/ha) scattered all over the region, especially Cubist, GBM, 
SVM, and XGB techniques, we see the maximum portion in the south- 
eastern region (Paschim Medinipur), eastern region (east and western 
part of Purba Bardhaman), north-western region (a scattered portion of 
Birbhum), and MARS and RF techniques, we see the middle-eastern 
region (southern part of Purba Bardhaman, south-eastern part of 
Bankura), north-western region (southern part of Bankura). We deter
mined that the maximum rice yield zone in the study area will become 
low (1.67–1.04 t/ha) and very low (1.04–0.05 t/ha) due to climatic 

Figure: 5. Future rice yield mapping by six machine learning techniques of 2030 under SSP2-4.5 of the MIROC6 model.
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change, water scarcity, and solar radiation.
In this study area, using all these techniques (Cubist, GBM, MARS, 

RF, SVM, and XGB), we observed that high (3.51–2.78 t/ha) and very 
high (5.09–3.51 t/ha) levels of rice yield show maximum portion in the 
eastern region (maximum portion of Purba Bardhaman district and a 
partial portion of eastern part of Paschim Bardhaman district), north- 
eastern (maximum portion of Murshidabad district and some of south
eastern part of Birbhum district), and south-eastern region (a maximum 
portion of Jhargram. We also examined the western region (parts of 
Purulia and Bankura districts) using GBM and RF approaches. In this 
region, we show that rice yield will increase under SSP5-8.5 in 2030 due 
to climate change, adequate water supply, use of new high-yielding rice 
varieties, better pest management, proper irrigation system, use of good 
fertilizer, good seeds, advanced tools and machinery, development of 
farmer literacy and yielding skills, and so on. Rice yields at modest levels 
(2.78–2.01 t/ha) are widely distributed (Fig. 6). Using Cubist, GBM, RF, 
SVM, and XGB techniques, we show that the eastern and south-eastern 
regions (south-eastern Birbhum, a portion of Purba Bardhaman, and 
scattered Medinipur districts) have the highest rice yield, followed by 
the western region (some Purulia districts), and the northern and 
northeastern regions. However, we observed that there are no moderate 
rice yield zones in the western region when applying MARS methodol
ogies. Finally, low (2.01–1.20 t/ha) and very low (1.20–0.06 t/ha) re
gions are viewed in the western region (maximum portion of Purulia, 
some of Paschim Bardhaman), north-western (Birbhum district), and 
middle region (Bankura district), and partially in the north-eastern, 
eastern, and south-eastern regions (scatter portion of Murshidabad, 
Purba Bardhaman, Jhargram, and Paschim Medinipur districts) of the 

study area due to climatic change, water scarcity, and solar radiation.

4.5. Analysis of rice yield gap mapping

The rice yield gap mapping is very important for sustainable agri
culture production to meet food security problems considering climate 
change impacts [11]. It is very crucial for agriculture intensification on 
regional to global scales. However, the first step is to estimate the rice 
yield considering different influencing factors by six machine learning 
methods. Then the rice yield gap was mapped from simulated and 
field-based rice yield data using ML from 2023 to 2030. It was observed 
that a very high rice yield gap (50–60 %) showed in some parts of the 
Birbhum, western parts of Bankura, Purulia, Paschim Medinipur, and 
Jhargram districts by all machine learning models because of insuffi
cient water supply and soil quality. It was also observed that high rice 
yield showed in small parts of Murshidabad, small parts of the Birbhum, 
western parts of the Purulia and Bankura, and small areas of Paschim 
Medinipur and Jhargram.

This study topic uses a variety of machine-learning approaches to 
show the rice yield disparity (%) in 2023. Cubist, GBM, SVM, and XGB 
techniques have been used to identify a very high (60-50 %) rice yield 
gap in the middle-northern region (south-eastern part of Birbhum), 
north-western region (northern and south-western part of Birbhum), 
south-eastern region (a maximum portion of Jhargram and Purba 
Medinipur districts), and some of the eastern (Purba Bardhaman) and 
western regions (Purulia), but except for the extreme northern region, 
the MARS technique has a very high rice yield gap that is evenly 
distributed (Fig. 7). On the other hand, RF approaches have a very small 

Figure:6. Future rice yield mapping by six machine learning techniques of 2030 under SSP5-8.5 of MIROC6 model.
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rice yield gap that is unevenly distributed. It was shown that this region 
experienced the biggest rice production gap due to tremendous issues 
with less water availability and several sorts of environmental concerns 
such as climate change, and land degradation. There is a high rice yield 
gap (50-40 %) scattered throughout the area, but the maximum we 
identified (using GBM and MARS techniques) in the middle and south- 
east regions (Bankura, Jhargram, and Paschim Medinipur districts), 
northern region (Murshidabad and Birbhum districts), and western re
gion (Purulia district). It was discovered that a moderate rice yield gap 
(40-30 %) covered almost all regions, while a low rice yield gap (30-20 

%) was distributed across most districts, with a very low rice yield gap 
(20-10 %) affecting most of the north-western region (western part of 
Birbhum and northern part of Paschim Bardhaman districts) and west
ern region (Purulia district).

The percentage changes in the rice yield gap mapping study were 
expressed using the Cubist method (Fig. 8). According to this method, 
20.18 % changes in Murshidabad and 32.59 % changes in Purba Bard
haman districts indicate a high rice yield gap; 35.66 % changes in 
Birbhum, 32.10 % changes in Paschim Bardhaman, 33.96 % changes in 
Bankura, and 43.31 % changes in Jhargram districts indicate a moderate 

Fig. 7. Rice yield gap mapping by six machine learning techniques of 2023.

Fig. 8. Percentage changes of rice yield gap mapping by a Cubist ML method.
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rice yield gap; and finally, 42.61 % changes in Purulia and 35.6 % 
changes in Paschim Medinipur districts indicate a low rice yield gap. As 
a result, in all districts, 16.48 % changes in very high rice yield gaps 
were observed in Murshidabad district due to changing climate and 
variability, while 23.25 % changes in very low rice yield gaps were 
observed in Jhargram district due to agricultural input availability, 
agricultural efficiency, climate change, rainfed rice crop growth, and 
converting agricultural fallow lands into cultivable lands (Fig. 9).

4.6. Analysis of future rice yield gap mapping

Using all of the ML techniques (Cubist, GBM, MARS, RF, SVM, and 
XGB), the maximum portion of high (50%–40 %) and very high (60%– 
50 %) rice yield gaps increase in the north-western region (Birbhum 
district), middle and south-eastern regions (Bankura, Jhargram, and 
Paschim Medinipur districts) in 2030 under the SSP2-4.5 scenario due to 
water availability challenges, various types of environmental problems, 
and so on (Fig. 10). A moderate rice yield disparity (40%–30 %) was 
seen in all districts, particularly in the Cubist and RF approaches we 
identified, with most of the moderate rice yield gap evenly distributed 
throughout the region. It observed that in Cubist, GBM, MARS, RF, SVM, 
and XGB techniques, the maximum portion of low (30%–20 %) and very 
low (20%–10 %) percentage rice yield gap in the eastern, north-eastern 
region (Purba Bardhaman, Murshidabad districts), western region 
(Paschim Bardhaman district), and scattered it on the north-western 
region (Birbhum district), western region (Purulia and Bankura dis
tricts), and south-eastern region (scatter portion of Jhargram and 

Paschim Medinipur districts).
This map examined the rice yield gap (%) in 2030 using various ML 

algorithms (Cubist, GBM, MARS, RF, SVM, and XGB) based on the SSP5- 
8.5 scenario (Fig. 11). The rice yield gap in the middle-eastern region 
(overall Bankura), north-middle region (south-eastern part of Birbhum), 
western region (northern part of Purulia), and south-eastern region 
(spready distributed of Jhargram and Paschim Medinipur districts) was 
very high (60-50 %) and high (50-40 %) compared to the north-western 
region (southern and western part of Birbhum) and eastern region 
(north-eastern part of Purba Bardhaman), but in the MARS, SVM, and 
XGB techniques. As a result, it was discovered that the Bankura district 
has a significant rice yield gap due to inadequate crop management, dry 
and drought-prone locations, soil concerns, poor water management, 
high-temperature challenges, and so on. It was shown that a moderate 
rice yield gap (40-30 %) was scattered throughout the region. According 
to SVM methodologies, the western area (Purulia and the western half of 
Bankura districts), the south-east region (Jhargram and Paschim Medi
nipur districts), and the eastern region (Purba Bardhaman district) had 
the greatest mild rice yield gap. In the northern and north-eastern re
gions (Murshidabad district), north-western, western, and middle- 
western regions (partially viewed Birbhum, Paschim Bardhaman, and 
the eastern part of Purba Bardhaman districts), where the rice yield gap 
is low (30-20 %) and very low (20-10 %), the XGB technique was also 
found in the eastern region (Purba Bardhaman district) (Fig. 11). 
However, Murshidabad and Paschim Bardhaman districts had low and 
very low rice yield gaps, which resulted in improved crop management, 
greater use of balanced fertilizer, planting healthy seeds, pest and 

Fig. 9. Validation of the best machine learning model of Cubist with field observation photographs.
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disease control, rational irrigation, and water supply, among other 
things.

5. SHAP analysis

This analysis aimed to determine the importance of different features 
in the model’s decision-making process across three cities, as depicted in 
Fig. 12a–f. The mean absolute SHAP value was calculated to assess how 
much each feature impacts the model’s prediction. This analysis aimed 
to highlight the relative importance of features in the model’s decision- 
making process. The parameters are arranged in descending order, 
indicating that features at the top exert a more substantial influence on 
the final prediction compared to those lower down. Fig. 12a–f displays 
SHAP values for input factors, illustrating their impact on trends (i.e., 
SHAP summary (left side) and bar plot (right side). The bar plot function 
is passed a matrix of SHAP values, it generates a global feature impor
tance plot. This plot represents the overall importance of each feature, 
calculated as the mean absolute value across all provided samples. A 
SHAP bar plot visualizes the feature importances calculated using SHAP 
values. According the SHAP bar plot features are most influential in 
making predictions and how they contribute to the overall model 
behavior. It provides a clear and interpretable way to assess feature 
importance in machine learning models (Fig. 12 right side). The SHAP 
values are shown on the x-axis, representing the influence of each con
ditioning factor on the prediction. On the y-axis, each dot represents a 
sample, colored from blue for lower values to pink for higher values of a 
factor. The horizontal position of the dot indicates whether the condi
tioning factor positively or negatively influences the prediction. In the 

cubist analysis, the key parameters identified are Pr, sm, elevation, and 
stemp (Fig. 12a left side). Among these, Pr emerges as a primary 
contributor to the RYP analysis. According to the SHAP bar plot 
(Fig. 12a right side), analysis, elevation, stemp, and Pr are identified as 
the most important factors influencing the RYP analysis. GBM based 
SHAP analysis showed most influential parameters for RYP analysis are 
ranked as elevation, aet, Pr, stemp, sm, and temp (Fig. 12b, left side). 
Conversely, the SHAP bar plot indicates that Pr and aet are prioritized as 
the most significant factors for RYP analysis, with temp having the least 
impact (Fig. 12b, right side). Fig. 12c (left side) illustrates that the 
descending order of the most important parameters in the RYP analysis, 
according to the SHAP values of the MARS model, are aet, Pr, stemp, 
elevation, sm, and temp. Conversely, the SHAP bar plot ranked the pa
rameters as elevation, stemp, aet, Pr, sm, and temp (Fig. 12a, right side). 
The SHAP summary and SHAP bar plots for the RF, SVM, and XGB 
models (Fig. 12d–f) indicated that Pr and elevation are the top con
tributors. Conversely, stemp and sm have the least impact on the RYP 
analysis. Finally, the SHAP summary plot revealed that Pr, elevation, 
and aet were the most significant predictors of RYP analysis based on the 
all-ML results. Factors like temp, and stemp exerted a moderate impact, 
whereas sm had a minimal effect on RYP analysis (Fig. 12, left). Unlike 
the SHAP bar plot, the predicted RYP by the All ML model showed a 
different order in the important features range value as pr (0.21–0.49) >
ele (0.23–0.46) > aet (0.14–0.37) > sm (0–0.35) > stemp (0.01–0.32) >
temp (0.09–0.16) (Fig. 12, right).

Fig. 10. Future rice yield gap mapping by six machine learning techniques of 2030 under SSP2-4.5 of the MIROC6 model.
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Fig. 11. Future rice yield gap mapping by six machine learning techniques of 2030 under SSP5-8.5 of the MIROC6 model.

Fig. 12. SHAP summary (left side) and bar plot (right side) for Rice yield mapping analysis (a) cubist, (b), GBM, (c) MARS (d) RF, (e) SVM, and (f) XGB for 
validation purposes.
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6. Discussion

Investigating environmental and hydrometeorological parameters 
for predicting rice yields highlights a sophisticated understanding of 
how remote sensing integrated ML can improve agricultural produc
tivity. Our analysis across the study region, utilizing six ML models, 
revealed that geo-environmental parameters related to elevation, soil 
moisture (sm), precipitation (Pr), temperature (temp), soil temperature 
(stemp), and Actual Evapotranspiration (aet) all performed comparably 
in predicting RYP under the tropical climate conditions of Eastern India 
(Table 1).In this study Cubist model, followed by RF and XGB, proved to 
be the top performers due to their superior R2 values and lower RMSE 
values (Cubist < RF < XGB < GBM < SVM < MARS), highlighting their 
potential as reliable MLs. The study found a significant 99 % agreement 
(p < 0.001) among precipitation, temperature, and elevation variables 
in predicting rice yield in the area. A related study investigated climate- 
smart farming methods. According to Rockstrom et al. [48], yields can 
be greatly increased in the face of fluctuating precipitation conditions 
when technical innovation is combined with smart water management. 
The Boruta feature selection results (Table 3) showed that stemp factors 
had the highest mean importance (55.30), followed by Pr (53.16), 
elevation (51.51), aet (38.58), temp (34.18), and sm (37.44). These 
predictors were confirmed for sensitivity analysis of RYP mapping pa
rameters. The SHAP summary plot indicated that pr, elevation, and aet 
were the most crucial predictors in the RYP analysis across all machine 
learning results. Temp and stemp had a moderate influence, while sm 
had a minimal impact on the RYP analysis (Fig. 13). It is commonly 
known that plant transpiration, soil hydroclimatic conditions, and the 
physiological processes by which soil characteristics influence crop 
productivity are all related [49].

Previous research shows how machine learning (ML) is used for the 
prediction of crop yield [7]. A systematic literature review to extract and 
synthesize the algorithms and features. They investigated selected 
studies carefully, analyzed the methods and features used, and provided 
suggestions for further research. According to this research analysis, 
temperature, precipitation, and soil type are mostly used features and 
the most applied algorithm is Artificial Neural Networks. They also 
performed an additional search in electronic databases to identify deep 
learning-based studies and extracted the applied deep learning algo
rithms. According to this additional analysis, the most widely used deep 
learning algorithm is Convolutional Neural Networks (CNN), and others 
also used are Long-Short Term Memory (LSTM) and Deep Neural Net
works (DNN). On the other way, our analysis specified only rice yield 
gap prediction of specified districts of West Bengal in present and future 

scenarios using different types of ML models like Cubist, GBM, MARS, 
RF, SVM, and XGB and interpreted which model shows high rice yield 
gap and which model shows low. According to our analysis, we interpret 
the output results using different types of features criteria like climate 
change, soil type and texture, water availability, varieties of new 
high-yielding rice, pest management, irrigation system, fertilizer, and 
seeds, advanced tools and machinery, skills, and literacy of agricultural 
labor etc. Recognizing potential yields and yield gaps is vital for main
taining high crop productivity, improving livelihoods, and reducing 
environmental impact.

In Eastern India, with its rainfed and irrigated agricultural systems, 
the observed yield variability highlights the urgent need for adaptive 
strategies to mitigate the impacts of climate change and variability. 
Innovations such as rainwater harvesting, conservation tillage, drought- 
tolerance crop varieties, best crop rotation analysis, and precision irri
gation systems are crucial components of a comprehensive strategy to 
reduce yield gaps and improve food security [50,51]. To effectively 
resolve yield gaps, Ray et al. [52] argued against concentrating only on 
climatic conditions and instead supported a broader approach that also 
takes soil suitability and management techniques into account.

Nayak et al. [4] revealed a rice yield gap and analyzed nitrogen in
puts without compromising rice productivity by utilizing a large field 
database of individual farmers for rice production in India’s north
western Indo-Gangetic plain. Another study conducted in India used the 
DSSAT (Decision Support System for Agrotechnology Transfer) model to 
examine the rice production gap under projected climate change sce
narios [11]. However, our data revealed a rice yield gap in the present 
and future scenarios using various types of machine learning models in 
eight districts of West Bengal like Murshidabad, Birbhum, Purba Bard
haman, Paschim Bardhaman, Bankura, Purulia, Jhargram, and Paschim 
Medinipur).

The study demonstrates that crop yield prediction at an early stage 
can be achieved using machine learning approaches such as the Statis
tical Model of Multi Linear Regression, Back Propagation Neural 
Network (BPNN), Support Vector Machine (SVM), and General Regres
sion Neural Networks (GRNN) over 18 years in 28 districts of Tamil 
Nadu [17]. This study examined rice yield prediction in the Tamil Nadu 
delta region and focused on integrating crop, meteorological, and soil 
data from agricultural datasets to evaluate yield prediction behavior 
using the MLR-LSTM (Multiple Linear Regression and Long Short-Term 
Memory) model, which is a hybrid architecture. The results are 
compared to classic machine learning approaches such as support vector 
machines (SVM), long short-term memory (LSTM), and random forests 
(RF) [14]. This study offered a model interpretation and prediction of 

Fig. 13. District-wise rice yield data from 2010 to 2017.
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rice production over the Indo-Gangetic Plains in India by combining 
time-series satellite data, environmental variables, and rice yield records 
from 2001 to 2016 using a Transformer technique [12]. This research 
forecasted rice yield in Kerala, India using Machine Learning and K 
Nearest Neighbour Regression with the best accuracy of 98.77 %.

However, the present research focused on future prediction of the 
rice yield gap mapping considering six different influencing parameters 
in the eight districts of West Bengal. It was observed that the highest R2 

is 0.73 by the Cubist model. Fig. 13 depicts district-specific rice yield 
data from 2010 to 2017 (http://data.icrisat.org). Murshidabad, Birb
hum, and Purba Bardhaman districts produced more Kharif rice than 
other districts in 2017 due to reliable irrigation facilities, high-yielding 
cultivars, enough fertilizer consumption, agricultural instruments, and 
machinery. These findings were closely associated with our estimated 
current and future rice yield statistics. As a result, our machine learning 
predictions are very acceptable and correspond well with field obser
vation datasets. The research’s limitations include a lack of field ob
servations in locations in which transportation is very unavailable. 
Furthermore, the future direction of the research will incorporate deep 
learning and artificial intelligence for rice yield and gap monitoring. 
Using approaches such as Cubist, GBM, MARS, RF, SVM, and XGB, the 
highest rice yields, categorized as extremely high (5.56–3.49 t/ha) and 
high (3.49–2.49 t/ha), are projected for the northern and north-eastern 

regions (Murshidabad and Purba Bardhaman) and the southeastern re
gion (Jhargram and Purba Medinipur). In these regions, rice yield is 
expected to increase under the SSP2-4.5 scenario by 2030 due to climate 
change, adequate water supply, the adoption of new high-yield rice 
varieties, improved pest management, proper irrigation systems, effec
tive fertilizer use, quality seeds, advanced tools and machinery, and 
enhanced farmer education and skills. Similarly, the Bankura, Purulia, 
and West Birbhum districts experience a substantial rice yield gap due to 
factors such as inadequate crop management, dry and drought-prone 
conditions, soil issues, poor water management, low soil organic car
bon, and high-temperature challenges. The study found that a moderate 
rice yield gap (40-30 %) is widespread throughout these regions.

7. Adaptation strategies and policy recommendations

Adaptation techniques and policy proposals are critical components 
of a sustainable agricultural development framework that takes climate 
change consequences into account. Rice is extremely susceptible to 
decreased water availability because it requires a lot of water for pro
duction. Thus, water-saving irrigation systems are critical for soil and 
water conservation efforts. Various adaptation tactics, such as crop 
spacing, transplanting timing, N-fertilizer use, and cultivars, can be 
employed to maximize optimal rice yield. Various policies [53] can be 

Fig. 14. Representation of sustainable development goals correlated with photographs of field surveys in several districts.
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implemented, such as the construction of farm ponds to store rainwater, 
the adoption of water-saving cultivation methods, protective irrigation 
during critical stages, the conversion of rice fields to other purposes, and 
crop insurance for rainfed and irrigated land. However, these types of 
adaptation tactics and policy consequences are difficult to implement 
because farmers’ knowledge, expertise, and resource availability vary by 
place. Thus, training programs and demonstrations of agricultural 
technologies for local government officials are critical in adapting to 
climate catastrophe. In addition, our research focuses on Kharif rice 
output and gap mapping for future agricultural water management 
planning to meet the UN’s sustainable development goals 1, 2, 8 & 13 
(https://sdgs.un.org/goals). Several district-specific field survey pho
tographs were combined with SDGs to establish a relationship between 
the current research’s actual livelihood situations (Fig. 14). However, it 
is critical to take into account a broad range of technical improvements 
in rainfed dry circumstances with variable precipitation, such as genetic 
crop upgrades, soil moisture preservation strategies, soil health in
dicators and the use of precision agriculture approaches [50,58]. These 
technologies may improve productivity and resilience [54].

The study highlights the importance of adaptive management and 
suggests that strategies and practices like precision agriculture, soil 
resilience, drought resilience, seed resilience, live stock system adapta
tion, crop variety adaptation, conservation tillage, and enhanced water 
use efficiency are crucial for reducing yield gaps [54–56]. Furthermore, 
the adoption of the Climate-Resilient Agriculture (CRA) approach is an 
alternative that is critical to food security and reduces the yield gap in 
the face of changing climate circumstances. For rural societies to flourish 
sustainably, it may be beneficial [27,28]. Due to variations in precipi
tation, temperature, farming practices, and soil characteristics across the 
study area, specific planting and harvesting schedules are necessary for 
crops, especially rice, which also contend with challenges during the dry 
summer and winter seasons. Given diminishing water resources and 
heavy reliance on rainfed and irrigated rice production, the agricultural 
policies of the study region emphasize the urgent requirement for 
water-efficient practices, including restrictions on irrigation for rice 
cultivation. This study emphasizes maintaining soil health through the 
application of organic fertilizers, strategic irrigation planning, effective 
management of rice fallow periods with suitable alternative crops, and 
enhancing managed aquifer systems to improve soil moisture conditions 
during the dry season [57]. These predictive methodologies are essential 
for policymakers to proactively plan and implement risk minimization 
and adaptation strategies at both regional and national levels.

8. Conclusions

The current study focuses on Kharif rice yield and gap mapping 
utilizing ML algorithms with field observation datasets. Various ma
chine learning methods, including Cubist, GBM, MARS, RF, SVM, and 
XGB, were used to predict present and future rice yield (t/ha) and yield 
gap (%) monitoring considering SSP2-4.5 and SSP5-8.5 climate data in 8 
districts of West Bengal, India, in 2023 and 2030. Among the six MLs, 
the Cubist model, followed by RF and XGB, proved to be the top 
performer, showcasing superior R2 values and lower RMSE values (in 
descending order of R2: (Cubist > RF > XGB > GBM > SVM > MARS), 
with minimal distinctions in RMSE values across these MLs. The Boruta 
and SHAP summary plots indicated that pr, elevation, and aet were the 
most crucial predictors in the RYP analysis across the study region. The 
machine learning models were compared and classified into five zones 
(very high, high, moderate, low, and very low). The study findings 
highlight that Murshidabad and Purba Bardhaman districts exhibit high 
rice yields due to ample water availability. Using the Cubist model, it 
was determined that the highest rice yields (5.60–3.45 t/ha) are pre
dominantly found in the northern and northeastern regions, including 
Murshidabad, Purba Bardhaman, parts of Birbhum, and some areas of 
Paschim Bardhaman. Moderate rice yields (2.37–1.44 t/ha) are scat
tered across various parts of Birbhum, Paschim Bardhaman, Bankura, 

Jhargram, northern Paschim Medinipur, and Purulia districts. 
Conversely, the western region of the study area, encompassing Purulia 
and western Birbhum, shows low rice yields (1.44–0.39 t/ha), while the 
middle portion and northwestern region (Bankura districts and western 
Birbhum) have very low yields (0.39–0.10 t/ha). The analysis discov
ered that the north-eastern regions of Murshidabad and Purba Bardha
man had high rice yields in 2023, while the south-eastern regions of 
Jhargram and Paschim Medinipur had a rise by 2030. In 2023, the 
Cubist approach shows a significant rice yield disparity in the eastern, 
western, and southern portions of the research area. By 2030, this gap is 
expected to reduce to some extent in Birbhum and Bankura districts. 
Rice crop growth in many districts remained unpredictable due to their 
reliance on precipitation. Climate change, soil issues, water stress, hard 
rock, overuse of agrochemicals, and farmers’ inefficiency with sophis
ticated technologies are all factors limiting rice production. If predictors 
other than elevation are of low resolution, the reliability of yield fore
casts could diminish. The study area exhibits diverse climatic conditions 
from east to west, varying agricultural practices, soil qualities, and 
different crop varieties, all of which influence the reliability of rice yield 
gap mapping. While remote sensing-derived estimates of yield and yield 
gaps may not always achieve the precision of field-based assessments, 
the extensive spatial and temporal coverage offered by remote sensing 
technologies often offsets these shortcomings, rendering it a valuable 
tool for diverse applications.

To preserve rice yields in the future, it is recommended to identify 
and implement climate change adaptation alternatives such as changing 
sowing dates and seedling ages, specific crop varieties, agricultural 
system (i.e. rainfed and irrigated system) fertilizer application timing, 
and irrigation management practices. The study further utilized crop 
scouting alongside a multi-year database gathered across various sea
sons and specific crop varieties. In the future modeling approach, 
advanced deep learning techniques and high-resolution Unmanned 
Aerial Vehicle (UAV), PlanetScope data will be integrated with soil pa
rameters, farming practices, and socioeconomic conditions of farmers, 
along with remote sensing indices, to conduct a comprehensive analysis 
of rice yield gaps at the regional level. However, these methodological 
frameworks can be utilized with or without adjustments in any subject 
field to achieve the UN’s sustainable development goals.
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