Development and Deployment of Climate Resilient Wheat Varieties to Ensure Food Security in Africa

- W. Tadesse: Principal wheat breeder
- S. Tawkaz: DH specialist
- F. Rachdad: Research assistant
- W. Shiferaw: Research assistant
- Z. Khel: Biometrician
- A. Sherif : Breeder
- I. Tahir: Breeder
- N. Geleta: Wheat breeder
- H. Zegeye : Wheat breeder

- S. Kemal: IPM
- K. Nazari: Rust pathologist
- M. Kesser
- Z. Bishaw: Seed scientist
- A. Niane: International nursery scientist
- S. Udupa: Molecular geneticist
- A. Hamwieh: biotechnologist
- S. Kumari, Biotechnologist
- K. Sharma: Bioinformatics

Contact: email: <u>w.tadesse@cgiar.org</u>; twitter @w_tadesse

Global trends in wheat production, 1961-2022

- Wheat production has increased across years globally with out significant change in production area
- This is due to adoption of high yielding wheat varieties, fertilizers, pesticides, irrigation, machineries, favorable policy environments etc.

Production, Imports, Consumption (MMt) and yield (t/ha) in Africa, 2010-2020 (FAO, 2023)

*Africa grows wheat in around 10 million ha and produces 25 million tons

- Consumes 75 million tons and imports 50 to 55 million tons per year
- Average import price: 350 \$/ton: about 20 billion USD/year

Challenges and Opportunities of Wheat Production in the CWANA and SSA regions

Challenges

- Biotic and abiotic stresses associated with climate change
- Poor infrastructure
- Increasing cost of inputs (seed, fertilizer, chemicals, machineries etc)
- Lack of subsidies
- Social unrest and conflicts both in Africa and beyond affects wheat production and marketing (e.g. the Ukraine-Russia conflict)

Opportunities

- Potential for wheat expansion : vertical and horizontal
- Increasing urbanization and change in food habit: demand for wheat increases
- Availability of young and productive workforce
- Huge regional market for wheat
- Potential for industrialization and job creation across the entire wheat value chain: production, processing, marketing and consumption

Rusts, Septoria, drought & heat are the most important wheat biotic and abiotic stresses affecting wheat production in the CWANA and SSA regions.

Production loss of cultivar Achtar : 100,000 T Monetary loss : \$30 m US dollars Estimated Yield loss Gereck : 40% Monetary loss : > \$52 m US dollars Syria: Cham 8, Cham 6 : 30-80 % yield loss Ethiopia : Attila (Kubsa): 40-70% yield loss

Drought causing total crop failure, Merchouch 2022

Wheat Breeding Objectives

- Development of high yielding wheat varieties with resistance/tolerance to the major biotic and abiotic stresses targeting major market segments/ agro-ecological regions
- Identification and mapping of new genes for further gene introgression and deployment
- Capacity development (short and long term training)
- Scaling of wheat technologies through research for development projects (example: TAAT)

Comparison of breeding schemes at ICARDA

PYTs (2000-3000), AWYTs (600-1200) across key locations; GWAS, MAS, GS: We have tried GS on PYT to predict AWYT performance. Very low: 0.3%

Updated Breeding Scheme

• The rate of genetic gain, $\Delta G = i h \sigma A / T$,

where: i = selection intensity, h = heritability in the narrow sense, σA = is additive genetic variance, L = the length of breeding cycle interval or generation.

Tadesse et al 2016. In: The World Wheat Book; Tadesse et al 2022

With the current modified shuttle breeding scheme, it takes only 4 years (earlier 8-10 years) from crossing to distribution of Elite genotypes to NARS. Tadesse et al 2022

Regional Rust Research Lab , Izmir, Turkey: a huge phenotyping platform which should be utilized effectively along with other global phenotyping platforms

icarda.org

Gene Pyramiding: MAS

Stem rust	Yellow rust	Leaf rust	Other Genes
Pavon Sr 24+ Sr 31+Sr 50	Yr5, Yr45	Lr37	Stb4,
Sr 50+Sr 45 # 1	Yr10	Lr34	Tsnl
Sr 25	Yr15	Lr67	Crel
Pavon Sr 24+ SR 26+Sr 31	¥r17	Lr10	Cre8
Sr 22/CO 1213	Yr 48	Lr14a	Fhbl
WestoniaSr 24+Sr 26	Yr 5+10	Lr24	H5, H13, H22
Sr 33+Sr 45 #36	Yr5+10+15	Lr23	H23, H26
Angas Sr 32	Yr48+Yr15	Lr22a	
Sr 2	Yr17+Yr48	Lr25	
Sr 38	¥r27+5+10+15	Lr24+Sr24	
Sr 39	Yr36	Lr19+Sr24	
other minor genes	other miner genes		

■ R (≤10) ■ MR (10-30] ■ S (>30)

Genetic stocks from Dr Evans Lagudah

The shuttle breeding scheme with MAS enables for accelerated gene pyramiding and higher rates of genetic gain

Tadesse et al. 2019, Crop Science; Tadesse et al 2022, CBGG

Yield of wheat genotypes across key locations

• Above average in SIDS, WM and Marchouch

Variability of Elite spring bread wheat genotypes for Fe, Zn, Se concentrations, gluten strength (W), and HMM glutenin alleles at Merchouch

Var#	Pedigree	Zn mg/Kg	Fe mg/Kg	Se mg/kg
27488	HAAMA-3//MILAN/DUCULA	49.06	46.888	0.296
27611	ASEEL-1//MILAN/PASTOR/3/SHAMISS-3	44.40	43.046	0.348
27630	GALVEZ/WEAVER/3/VORONA/CNO79//KAUZ/4/MILAN//PSN /BOW	43.36	39.494	0.392
27811	WBLL1//TEVEE/KAUZ/3/MILAN/SHA7//POTAM*3KS811261- 5	42.84	40.600	0.292
27878	SHUHA- 4//NS732/HER/4/VEE/PJN//2*TUI/3/WH576/5/ICARDA- SRRL-1	41.92	50.532	0.299
27888	GIZA-164/SEKHRAH-1	41.43	50.673	0.288
27889	SW94.2690/SUNCO/4/PRINIA-1//NESMA*2/14-2/3/DUCULA	40.69	34.978	0.309
28241	GIZA-164/SEKHRAH-1	40.47	53.794	0.303

Gluten strength (W)

Zn and Fe concentrations (mg/kg)

Germplasm distribution: CWANA and SSA regions and beyond

Special nurseries contribute for successful variety releases by NARS

- 1. International Nurseries
- 2. Targeted distribution of elite genotypes (5-10 genotypes; 0.5-1 kg seed)
- 3. Key locations partners: (Stage 1 and stage 2)
- 4. Project based distribution: TAAT; CAIGE

In the last 10 years, more than 70 wheat varieties of ICARDA origin have been released by the national programs in the CWANA and SSA regions.

Hybrid wheat breeding using the BLA system: F1 seed production at Merchouch, Morocco

Capacity development in wheat breeding: Short and long-term trainings at ICARDA

Out scaling of heat tolerant wheat through TAAT project in SSA * Wheat production area has increased in Ethiopia (from 1.8 mha to 3mha including 1 million hactar under irrigation), Sudan, & Nigeria

- > Involvement of stakeholders across the wheat value chain at the innovation platform
- > Demand driven technology /policy development leads to faster adoption rate of technologies/policies
- > Cluster farming, input supply and marketing, development of infrastructures etc, needs decision by policy makers

Summary

- > Accelerated genetic gain (1.5-2%) for yield and other key traits
- > Development of resistant varieties (major +minor genes) following key location and MAS approaches
- > Effective utilization of the global phenotyping platforms
- > Lowering the yield gap: Integrated crop management
- Increase the rate of variety replacement: Rapid seed multiplication and marketing scheme
- Public-private partnership in the seed industry
- > Development of hybrid wheat for higher yield potential
- > Regional collaboration and investment in wheat technologies development, production and marketing

Acknowledgements

- ICARDA's Wheat Team+ PhD students
- NARSs in the CWANA + SSA
- INRA-Morocco; ARC-EGYPT; AUB & AREC-Lebanon; EIAR-Ethiopia; ARC-Sudan and Turkey
- CGIAR, GRDC, AfDB, Arab fund, Kuwait fund

Science for resilient livelihoods in dry areas