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A B S T R A C T 

Food barley released varieties were tested in 2012 for performance across major environments in Ethiopia consisting 
of 12 varieties Diribe, Tilla, Abbay, Biftu, Defo, Dinsho, Mulu, Setegn, Misiratch, Basso, Mezezo and local checks over six 
locations Gergera, Estayish, Shambu, Arjo, Robe and Sinana. The objective was to determine genotype by environment 
interaction using AMMI and GGE biplot, compare the two models for identifying the adaptable and stable genotypes. 
Sinana was identified as the high yielding environment and MULU the high yielding variety with mean yields of 
3466.31 and 3137.67 kg/ha, respectively. The mean yield at Estayish was lower (1535 kg/ha) than other 
environments whereas lower yield (2212.16 kg/ha) was also obtained from the variety DINSHO. The AMMI analysis of 
Variance indicated that 47% of the total sum of squares is attributed to the Environmental effect, 8% to the genotypic 
effect and 25% to the interaction. The first three principal components of the GEI explained 81% of the variation. 
Genotypes Basso, Biftu and Setegn were the most stable whereas Diribe was unstable. Variety Mulu was identified as 
the winner genotype by AMMI model whereas Diribe was identified as the winner by the GGE model. GGE model 
better explains the which-won-where scenario and hence preferred to AMMI model. The discriminating and 
representative view of the GGE biplot depicted that Sinana and Shambu are discriminating environments whereas 
Sinana, Estayish and Gergera are representative environments. Therefore, Sinana is the ideal environment for 
discriminating genotypes and representing other environments for selecting ideal genotypes. 

Keywords: Multi-environment, GGE biplot, stability, AMMI, interaction, adaptability. 

 

INTRODUCTION 

Barley is a cool-season crop which grows at altitudes of 

about 3000 meter above sea level and commonly 

cultivated in stressed areas where soil erosion, 

occasional drought or frost limits the growth of other 

crops (Bekele et al., 2005). Ethiopia is the second largest 

barley producer in Africa, next to Morocco, accounting 

for about 25 percent of the total barley production in the 

continent (FAO, 2014). Barley production and 

consumption has a longstanding tradition in Ethiopia 

where the country is considered the centre of diversity 

or secondary origin of the crop with more than 15,000 

accessions conserved in the gene bank. 

In plant breeding programs, genotypes are evaluated in 

multi-environment trials (METs) by testing their 

performance across environments and selecting the best 

genotypes in specific environments. However, the 

selection of superior genotypes in multi-environment 

trials usually results in genotype-by-environment 

interactions that often complicate the interpretation of 

results obtained and reduce efficiency in selecting the 

best genotypes (Annicchiarico and Perenzin, 1994). 

This interaction is due to the changes in genotype’s 

relative performance across environments, as a result of 

differential responses of the genotypes to various abiotic 

and biotic factors (Dixon and Nukenine, 1997). Hence, a 
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significant Genotype by Environment (GE) interaction 

for a quantitative trait like grain yield can complicate the 

identification of superior genotypes for both improved 

crop development and new crop introduction. 

Statistical techniques have been proposed to facilitate 

the interpretation of GEI from MET’s. The most 

commonly used statistical methods for analyzing GEI is 

the two-way cross-classification analysis of variance 

(ANOVA). However, while this technique can adequately 

explain only the main effects and identify GEI as a source 

of variation, it fails to analyze the inherent effects of GEI. 

This is due to the addictive nature of the ordinary 

ANOVA model does not allow it to analyze a non-additive 

interaction component and other statistical approaches 

are therefore required to identify the relationships of 

interaction. 

Gauch and Zobel (1988) compared the performance of 

the ANOVA method with the regression method and 

found that ANOVA fails to detect a significant interaction 

component and the regression approach accounts for 

only a small portion of the interaction sum of squares 

only when the pattern fits a specific regression model. 

The AMMI model has been suggested to be an effective 

method because it captures a large portion of the GE 

sum of squares and uniquely separates main and 

interaction effects as required for most agricultural 

research purposes (Gauch, 2006). It has proved to be a 

powerful tool used by researchers to evaluate a number 

of genotypes established in a number of environments, 

identify stable and adaptable genotypes and determine 

the magnitude of GEI (Crossa, 1990). As a result, 

Grüneberg et al. (2005) reported that the AMMI model 

was a highly efficient multivariate tool for the analysis of 

MET data. Likewise, the most well-known and appealing 

component of AMMI analysis is the graphical display of 

the results in a very informative biplot (AMMI1) which 

shows both main and interaction effects for both 

genotype and environment (Zobel et al., 1988). Yet, the 

AMMI1 biplot does not have the most important 

property of a true biplot, namely the inner- product 

property. In addition, the AMMI1 biplot does not display 

the discriminating ability and representativeness view 

of a biplot which is effective in evaluating test 

environments. This has been recognized by Yan et al. 

(2000) who adopted the proposal of Gabriel (1971) by 

using the biplot technique to display the genotype main 

effect plus genotype-by-environment interaction (G+GE) 

of a METs data and called it the GGE biplot. 

GGE biplot is a graphical tool which displays, interprets 

and explores two important sources of variation, namely 

genotype main effect and GE interaction of MET data (Fan 

et al., 2007; Yan et al., 2000). GGE biplot analysis considers 

that only the G and GE effects are relevant and that they 

need to be considered simultaneously when evaluating 

genotypes. The GGE biplot has therefore been used in 

crop variety trials to effectively identify the best-

performing genotype across environments, identify the 

best genotypes for mega-environment delineation, 

whereby specific genotypes can be recommended to 

specific mega-environments and evaluate the yield and 

stability of genotypes (Yan and Kang, 2002; Yan and 

Tinker, 2006). The relative versatility of the GGE biplot, 

especially in mega-environment analysis and genotype 

selection, is worthy of being exploited for selection of 

genotypes for specific environments. More importantly, 

it would assist in guiding the direction of varietal 

development for stable ecology-based selections. 

The differences between the GGE biplot and AMMI 

methods are; firstly, AMMI stands for the additive main 

effect and multiplicative interaction (Gauch Jr, 1992), 

and GGE stands for genotype main effect plus GE 

interaction (Ma et al., 2004). Secondly, the GGE biplot 

analysis is based on the environment-centred principal 

component analysis (PCA), whereas AMMI analysis is 

established on double centred PCA (Kroonenberg, 1995). 

However, according to Yan and Tinker (2006), AMMI 

could be misleading if used for the purpose of “which-

won-where” (i.e., identification of mega-environments as 

well as their winning genotypes). Also, Ding et al. (2007) 

asserted that the GGE biplot is superior to the AMMI, 

because it provides a lot of more visual interpretations 

than the AMMI, by allowing the visualization of any 

crossover GE interaction which is usually essential to 

breeding programs. 

Several multi-environment trial studies have compared 

the AMMI and GGE biplot analyses to obtain an effective 

tool for analyzing GEI and have come out with differing 

results. Kandus et al. (2010) found the AMMI model was 

the best model to describe the GEI in maize. Stojaković et 

al. (2010) and Stojaković et al. (2010)  also found out 

that the models provided similar results. Moreover, Rad 

et al. (2013) indicated that both models performed 

equally using data on bread wheat while Samonte et al. 

(2005) found the AMMI and GGE biplot analyses 

complementing one another. Contrary to these findings, 

Yan et al. (2007) compared the GGE biplot and AMMI 
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analyses and concluded that the GGE biplot was superior 

to the AMMI biplot in mega-environment analysis and 

genotype evaluation. The main objectives of this study 

were therefore, to determine the magnitude and 

patterns of G×E interaction effects in food barley using 

the AMMI and GGE biplot methods, to observe mean 

performance and stability of 12 food barley genotypes 

and to compare GGE biplot and AMMI analysis and 

determine the most suitable method for evaluating MET 

of food barley in Ethiopia. 

MATERIALS AND METHODS 

The experiment was conducted at different locations 

representing the south-eastern, North-eastern and 

western parts of Ethiopia in 2012 to evaluate the 

released varieties of food barley for yield and stability 

across contrasting environments in major parts of barley 

growing areas in Ethiopia. The locations were Gergera 

and Estayish in North Wolo Zone of Amhara region in 

Northeastern Ethiopia, Arjo and Shambu in East and 

Horoguduru Wolega Zones of Oromia Region in the 

Western Ethiopia and Robe and Sinana in Bale Zone of 

Oromia Region in the Southeastern part of Ethiopia. The 

varieties included 11 improved varieties of food barley 

such as Diribe, Tilla, Abay, Biftu, Defo, Dinsho, Mulu, 

Setegn, Misirach, Basso, Mezezo and local checks. The 

trials were laid out in Randomized Complete Block 

Design with three replications. The plot size was 1.2 x 

2.5m (3m2) with row spacing of 20 cm. the central four 

out of the six rows were used as harvestable plots for 

yield and then converted to the hectare. All the 

agronomic and pest management practices were 

employed as per the recommendation in the areas. 

Additive Main Effect and Multiplicative Interaction 

(AMMI) Method: The additive main effects and 

multiplicative interaction (AMMI) method integrates 

analysis of variance and principal component into a 

unified approach (Bradu and Gabriel, 1978; Gauch, 

1988). AMMI method first fits the additive main effects of 

genotypes and environments by the usual analysis of 

variance and then describes the non-additive part, 

genotype by environment interaction, by principal 

component analysis. Stable genotypes for each 

environment were selected by AMMI and principal 

component axes (PCAs) were extracted and statistically 

tested by Gollob (1968) F-test procedure (Vargas and 

Crossa, 2000). These components from AMMI analysis 

were used to obtain a biplot of the main effect of means 

versus the first Interaction Principal Component 

Analysis Axis (IPCA1). IPCA1 the pattern of response of 

G, E, and GEI were then identified. The AMMI equation 

according to Gauch and Zobel (1988) for T genotypes 

and S environments is; 

𝑌𝑖𝑗 = 𝜇 + 𝑔𝑖 + 𝑒𝑗 +∑ λ𝑘

𝑛

𝑘=1

𝑎𝑖𝑘𝑦𝑗𝑘 + ε𝑖𝑗 

Where, Yij is the mean yield of the ith genotype in the jth 

environment; µ is the general mean gi is the ith genotypic 

effect; ej is the jth location effect; λn is the eigenvalue of the 

PCA axis n; αin and γjn are the ith genotype jth 

environment PCA scores for the PCA axis n; θij is the residual; 

n’ is the number of PCA axis retained in the model. Therefore, 
the interaction effect can be calculated as; 

 

(ttxE)ij   = y _ij − y _i − y _j − y _(..) 

 

The additive main effects and multiplicative interaction 

(AMMI) method integrates analysis of variance and 

principal component into a unified approach (Bradu and 

Gabriel, 1978; Gauch, 1988). AMMI method first fits the 

additive main effects of genotypes and environments by 

the usual analysis of variance and then describes the 

non-additive part, genotype by environment interaction, 

by principal component analysis. Stable genotypes for 

each environment were selected by AMMI and principal 

component axes (PCAs) were extracted and statistically 

tested by Gollob (1968) F-test procedure (Vargas and 

Crossa, 2000). These components from AMMI analysis 

were used to obtain a biplot of the main effect of means 

versus the first Interaction Principal Component 

Analysis Axis (IPCA1). IPCA1 the pattern of response of 

G, E, and GEI were then identified. The AMMI equation 

according to Gauch and Zobel (1988) for T genotypes 

and S environments is; 
 

𝑌𝑖𝑗 = 𝜇 + 𝑔𝑖 + 𝑒𝑗 +∑ λ𝑘

𝑛

𝑘=1

𝑎𝑖𝑘𝑦𝑗𝑘 + ε𝑖𝑗 

 

Where, Yij is the mean yield of the ith genotype in the 

jth environment; µ is the general mean gi is the ith 

genotypic   effect; ej is the jth location effect; λn is the 

eigenvalue of the PCA axis n; αin and γjn are the ith 

genotype jth environment PCA scores for the PCA axis n; 

θij is the residual; n’ is the number of PCA axis retained 

in the model. Therefore, the interaction effect can be 

calculated as; 

 

(GxE)ij =y ij-y i-y j-y .. 
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GGE Biplot Method: Mathematically, biplot may be 

regarded as a graphical display of matrix multiplication 

and for this study, the GGE biplot method outlined by 

Yan (2002) was used to display the G and GE interaction 

patterns in the data.  The which-won-where pattern 

(which is an intrinsic property of the GGE biplot 

rendered by the inner-product property of the biplot, of 

food barley genotype by environment data set was also 

visually presented. Additionally, GGE biplot was used to 

identify high yielding and adapted barley genotypes as 

well as suitable test environments. The best barley 

genotypes were represented by large principal 

component scores, PCA1 (high grain yield) and small 

principal component scores, PCA2 (high stability) (Yan, 

2001). Genotypes that had PCA1 scores greater than 0 

were identified as higher yielding and those that had 

PCA1 scores less than 0 were identified as lower 

yielding. PCA1 scores greater than 0 detected the 

genotypes of interest (i.e. adaptable or higher yielding), 

while PCA1 scores less than 0 discriminated the non-

adaptable ones (Zerihun, 2011). PCA2, which was 

related to genotypic stability or unstable, divided the 

genotypes of interest based on their scores. The model 

for the GGE biplot based on singular value decomposition 

(SVD) of the first two principal components is: 

 

Y _ij − µ − β_j = λ_1 ξ_i1 η_j2 + ε_ij 

 

Where Y _ij is the measured mean of genotype i in 

environment j, µ is the grand mean, β_j is the main effect 

of environment j, µ  + β_j being the mean yield across all 

genotypes in environment j, λ_1 and λ_2 are the singular 

values (SV) for the first and second principal component 

(PCA1 and PCA2) respectively, ξ_i1 and ξ_i2 are are 

eigenvectors of genotype I for PCA1 and PCA2 

respectively, η_1j and η_2jare eigenvectors of 

environment j, for PCA1 and PCA2 respectively, ε_ij is the 

residual associated with genotype i in environment j. 

Data analysis: data were subjected to analysis after 

checking for required assumptions of normality, 

homogeneity of variance using respective tests. The 

analysis was performed using R statistical software.  

RESULTS 

The mean yields of 12 barley genotypes grown in six 

environments are presented in Table 1. On average, 

grain yield of genotypes ranges from 2212.16 kg ha−1 

for DINSHO genotype to 3137.67 kg ha−1 for MULU 

genotype. In addition to these, half of the genotypes 

had mean above the average grain yield while the other 

half were below the average. Among the environments, 

Arjo, Estayish and Robe had below the mean average 

yields. The highest yields were recorded for 

environments Sinana followed by Gergera with mean 

yields of 3466.306 and 3322.4 kg ha−1, respectively. 

Varieties in figure 1 exhibit interactions across the test 

environments with the possible existence of crossover 

interaction. This indicates that the data signifies a 

remarkable genotype by environment interaction (GEI) 

and require further investigation to understand the 

magnitudes and patterns of interactions. 

The analysis of variance for grain yield (kg ha−1) of 

twelve barley genotypes tested in six environments 

showed 47.29% of the total sum of squares was 

attributable to environmental effects, 8.14% to 

genotypic effects, and 25.87% to G x E interaction as 

shown in Table 2. The analysis revealed that variances 

due to environments, genotypes and GEI interactions 

were highly significant (P < 0.01). The large variation 

due to the environment is an indication of diversity 

among environments and the highly significant 

variation of GEI is an indication of changes in the rank of 

genotype performance across environments. 

AMMI Model: The first three interaction principal 

components were highly significant (p<0.01) which 

implied that the interaction of barley genotypes with 

six environments was predicted by the first three 

components of genotypes and environments. The 

results further indicated that the first two interaction 

principal components (IPCA1 and IPCA2) were very 

important in explaining the interactions while the third 

(IPCA3) less significant compared with IPCA1 and 

IPCA2, and the rest IPCA’s were not significant. IPCA1 

explained 47 % of the variability relating to GEI while 

IPCA2 explains 32.6% of the GE interaction. Both IPCA1 

and IPCA2 comprise 79.6 % variations in the GE 

interactions. 

The AMMI biplot analysis for barley yield grown in six 

environments was presented in Figure 2.  The x-axis 

shows the main effects while the y-axis shows the first 

PCA axis and revealed differential responses of 

genotypes to the study environments. The figure 

depicts that LOCAL_CHECK, BASSO and MEZEZO were 

close to the origin (low IPCA1 score) and hence 

considered stable genotypes compared with others. 
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DAFO had the largest positive interaction scores while 

TILA had a relatively negative interaction. Environment 

Estayish and Robe were positively related to the 

interaction while Shambu is negatively related to 

poorly performing environment. Gergera, Sinana and 

Arjo can be considered stable environments.  Among 

the group of genotypes which had a negative 

interaction, MULU had a  relatively high mean yield. 

 

Table 1. Average grain yield (kg ha−1) of 12 barley genotypes in 6 environments compared with the rest of the 

environment. 

Genotypes 
Environments 

Arjo Shambu Gergera Estayish Sinana Robe mean 

DIRIBE 2785.690 1901.56 3105.0 776.667 4842.583 1666.583 2513.01 

TILA 2483.767 4520.28 2307.5 975.167 3676.667 1823.667 2631.17 

ABBAY 2015.623 2991.05 3268.8 1908.00 3948.833 2469.500 2766.97 

BIFTU 1998.387 2969.69 3654.7 1918.67 4137.833 2986.167 2944.23 

DAFO 2154.810 1569.12 3341.0 1337.83 2828.417 2810.750 2340.32 

DINSHO 1720.723 1885.81 3006.8 1596.33 2783.500 2279.750 2212.16 

MULU 2589.830 4462.61 3990.5 2138.50 3463.000 2181.583 3137.67 

SETEGN 1906.367 2510.36 3124.7 1234.33 3222.833 2332.083 2388.44 

MISRATCH 1644.467 4115.41 4030.2 933.167 3682.333 1805.250 2701.80 

BASSO 1785.947 2992.74 3676.5 1330.17 2824.667 2368.333 2496.39 

MEZEZO 2260.080 3283.88 2854.5 2372.50 3469.667 2411.083 2775.29 

LOCAL_CHECK 1761.570 3104.80 3508.7 1898.67 2715.333 2611.417 2600.08 

Mean 2092.272 3025.61 3322.4 1535.00 3466.306 2312.181 2625.63 

CV% 23.90656 26.3951 19.532 32.6474 14.85685 11.17023  

 

 
Figure 1. Average yield performance 12 barley genotypes across six environments. 
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Table 2. Additive main effect and multiplicative interactions (AMMI) analysis of variance for barley grain yield (kg ha-1) 

across environments. 

Source DF Sum of Squares Mean of Square Variation Explained (%) 

Environment (E) 5 105278618 21055723.60** 47.29 

Genotype (G) 11 18128643 1648058.46** 8.14 

G x E 55 57580614 1046920.26** 25.87 

IPCA 1 15 27074627 1804975.13** 12.16 

IPCA 2 13 18760617 1443124.39** 8.43 

IPCA 3 11 7615573 692324.82* 3.42 

Residual 132 41626631 315353.27 18.70 

Total 215 222614506 1035416.31**  

 

                 
Figure 2. AMMI biplot for 12 barley genotypes across 6 environments. 

 

GGE Biplot Analysis The partitioning of GGE through 

GGE biplot analysis showed that PCA1 and PCA2 

accounted for 45.76% and 25.22% of GGE sum of 

squares respectively for grain yield, explaining a total 

variation of 70.98 as shown in Figure 3. The GGE biplot 

revealed the best genotypes under different 

environments and identified genotype DIRIBE as the 

best genotype in the environments Sinana and Arjo. 

Genotype MEZEZO was best for environment Gergera, 

Estayish and Robe while MULU and MISRATCH for 

Shambu. Genotype DIRIBE gave the highest average yield 

(largest PCA1 scores), but was unstable over the 

environments, due to its high absolute PCA2 scores. In 

contrast, BIFTU yielded poorly in all environments, as 

indicated by its small PCA1 scores (low yielding) and 

relatively small PCA2 scores which make it relatively 

stable genotype. The average yield of genotypes MULU, 

MISRATCH, TILA, MEssZEZO and ABBAY were below the 

mean average (PCA1 scores < 0), as shown in Figure 3, 

and were thus classified as the non-adaptable genotypes. 

On the other hand, genotypes DIRIBE, DAFO, and 

DINSHO, with PCA1 scores > 0 were detected as the 

genotypes of interest (i.e. adaptable or higher yielding). 

Figure 4 shows GGE of genotypes for both average yield 
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and stability performance over environments. The line 

passing through the biplot origin is called the average 

environment coordinate (AEC). Closer to concentric 

circle indicates higher mean yield. The line which passes 

through the origin and is perpendicular to the AEC with 

double arrows represents the stability of genotypes. 

 

 

 
Figure 3. Which-won-where/what of GGE biplot graph. 

 

 

However, DIRIBE which had the longest projection from 

the AEC x-axis was highly unstable genotype whereas 

BASSO, BIFTU and SETEGN were very stable genotypes 

compared to the others. The double arrowed line also 

separated genotypes with the above average mean yield 

(DIRIBE, DAFO, DINSHO, SETEGN, BASSO and 

LOCAL_CHECK) from genotypes with the below average 

mean yield (MULU, MISRATCH, TILA, MEZEZO, AB- BAY 

and BIFTU). 

The discriminating power versus representativeness 

view of the GGE biplot as shown in Figure 5 showed that 

test environments Shambu and Sinana with the longest 

projection from the biplot origin were found to be the 

environments with more discriminating power that they 

provided much information about the differences among 

genotypes. On the other hand, Arjo, with its shortest 

vector from the biplot origin, was found less 

discriminating of the test genotypes. Test environments 

Gergera, Estayish and Sinana were found to be more 

representative of other test environments due to the fact 

that they have smaller angles with the Average 

Environment Axis (AEA). Sinana was therefore identified 

as an ideal environment that has both discriminating 

abilities of the genotypes and representative of the other 

test environments. Thus, environment Sinana can be 

used to effectively select superior barley genotypes that 

can perform consistently across environments. 
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Figure 4. Mean vs Stability of the GGE biplot. 

 
Figure 5. Discriminativeness vs Representativeness of the GGE biplot graph. 
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DISCUSSION 

This study revealed that GEI is a significant source of 

variation in the barley multi-environment trial. The 

observed pattern of GE interaction for grain yield of 

barley suggests that genotypes respond differently in 

different environments, hence the need for biplot 

analysis which allows visual interpretation of GE 

interaction and facilitates genotype recommendations in 

MET. Subsequently, two types of biplots (AMMI1 and 

GGE) were used to graphically display, interpret and 

explore important sources of variation, namely genotype 

main effect and GE interaction of MET data, to identify 

the genotypes which were superior or had adapted well 

in each environment based on their mean performance 

and stability and also to evaluate test environments for 

effective genotype evaluation based on their 

discriminating ability and representativeness. 

In this study, AMMI1 explained 47% of the variation 

while GGE biplot explained 70.98% of the G+GE total 

variance. In this study, the GGE biplot explains more 

variation than AMMI1 and hence, considered as an 

accurate presentation of G+GE of the mean yield of 

barley data. This may be due to the fact that AMMI1 

biplot (Zobel et al., 1988) has been proven to be very 

efficient in detecting important sources of variation of 

GE interaction effects and has also been adjudged as 

either superior or equal to GGE biplot analysis (Gauch, 

2006), it is not able to effectively display the relative 

performance of each genotype in each environment (i.e., 

does not have the most important property of a true 

biplot, which is the inner-product property). Therefore, 

the performance of a given genotype in a given 

environment cannot be accurately visualized even if it 

fully displays the data. In mega-environment analysis 

and genotype evaluation, GGE biplot is superior to 

AMMI1 bi-plot Yan et al. (2007) while the AMMI1 biplot 

is better viewed as a tool for presenting conclusions 

rather than as a tool for discovering which-won-where 

patterns. But GGE was criticized by Gauch (2006) for not 

being able to reveal which-won-where patterns if more 

than two PCs are required to approximate the data. 

With regard to visualizing the mean performance and the 

stability of the genotypes simultaneously, AMMI1 biplots 

identified MULU as the highest yielding genotype 

showing high absolute interaction with Shambu 

environment. But according to GGE biplot, DIRIBE was 

identified as highest yielding genotype. In addition, 

BASSO was considered as the most stable genotype 

though not high yielding by both biplots. 

Evaluation of the test environments for effective 

selection of superior genotypes is one of the most 

important features of GED and biplot analysis. Yet, the 

AMMI1 biplot (Zobel et al., 1988) displays the test 

environments by their main effects E and IPC1 scores, 

but provides no information on the environment’s 

ability in identifying superior genotypes, only the GGE 

biplot is able to optimize genotype selection based on its 

discriminating ability and representativeness view (Yan 

et al., 2007). Thus, the GGE biplot was able to identify 

Shambu as the ideal environment having a long vector 

length (discriminating ability) and a small angle 

(representativeness) to the average environment axis 

(AEA) and selecting MULU as a superior genotype that 

can perform consistently across good environments. 

CONCLUSIONS 

In general, this study revealed that GGE and AMMI1 

biplots are useful techniques to detect the existence of 

GE interaction between twelve food barley genotypes 

across six environments. AMMI model identifies MULU 

as the winner genotype while GGE model identifies 

DIRIBE as the winner genotype. Since GGE biplot 

explains more variation in the interaction effect, it may 

be preferred than AMMI biplot. In both models, MULU 

and DIRIBE perform better than the LOCAL_CHECK. 

The performance of a given genotype in a given 

environment was more accurately displayed by the GGE 

biplot compared to the AMMI1 biplot. The reason for this 

assertion is that, the which-won-where view of the GGE 

biplot proved to be a more effective visual tool in the 

mega-environment analysis and  genotype evaluation, 

because it explained more G+GE and depicted the inner 

product property of a biplot whereas the AMMI1 biplot 

provides no information on the environment’s ability in 

identifying superior genotypes: only the GGE biplot is 

able to optimize genotype selection based on its 

discriminating ability and representativeness view. 

Although both methods have proved to be important 

tools that can be used to effectively analyze and 

interpret GE interactions, the GGE biplot analysis 

provides a better innovative approach to the 

interpretation of genotype by environment interactions 

and this will enable breeders to effectively design the 

dissemination strategy for new barley genotypes. 
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