

Food security and better livelihoods for rural dryland communities

How to model ecological model in MAS - Examples

Quang Bao Le CRP-DS Agricultural Livelihood Systems

Cairo, 13-21 September, 2015

www.drylandsystems.cgiar.org

Static representation of the natural environment

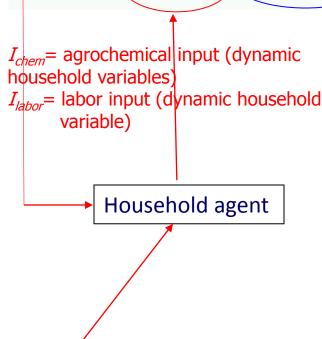
- Social ABMs often assums that the natural environment is static over time, remain unchanged except the impacts caused by agent actions.
- Spatial heterogeneity can be represented.

Dynamic representation of the environment, but treated as scenarios of exogeneous factors/drivers

- The environment change over time, but is not caused by modeled processes.
 - Climate conditions, global/regional trends of population, economy, etc.
- Possible dynamics can be driven by:
 - Other models (e.g. climate models)
 - Informative scenarios analysis
- Applicable for underlying environmental factors

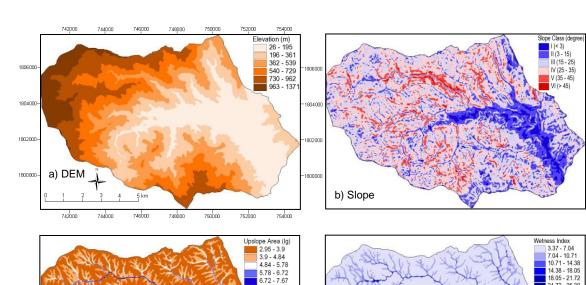
Representation of the natural environment as endogenous process

- Human-induced dynamic environmental process: The environmental process changes only in response to agent's actions.
- Dynamic environmental process: The process changes over time and partly caused by the modeled processes. With the absence of agent activities, the environment is still dynamic in a way beyond agent's intervention.
- Usually operated by environmental models, coupled with ABM in two possible ways:
 - Close coupling: the env. model is built-in, as a sub-model of ABM
 - Loose coupling: the env. model runs (possibly in parallel) and exchanges inputoutput with the ABM/MAS (e.g. model chains framework)


Agricultural production submodel: An example of patch agent's sub-model

Agricultural production function

P_{slope}= slope gradient (fixed GIS raster) P_{As} = upslope contributing area (fixed GIS raster) P_t = cropping time-length (dynamic GIS raster) $P_{a-yield} = aI_{chem}^{\beta_1} I_{labor}^{\beta_2} P_{slope}^{\beta_3} . P_{As}^{\beta_4} . P_{t}^{\beta_5}$

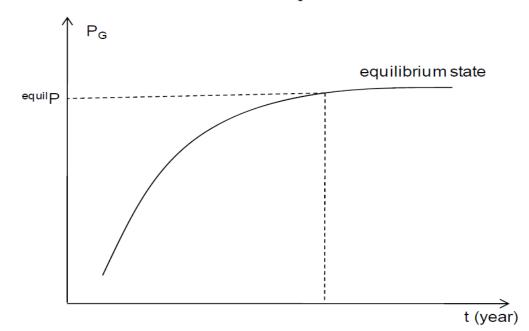

c) Upslope area (Ig)

Heterogeneous landscape environment

Policy driver: subsidy Market driver: price

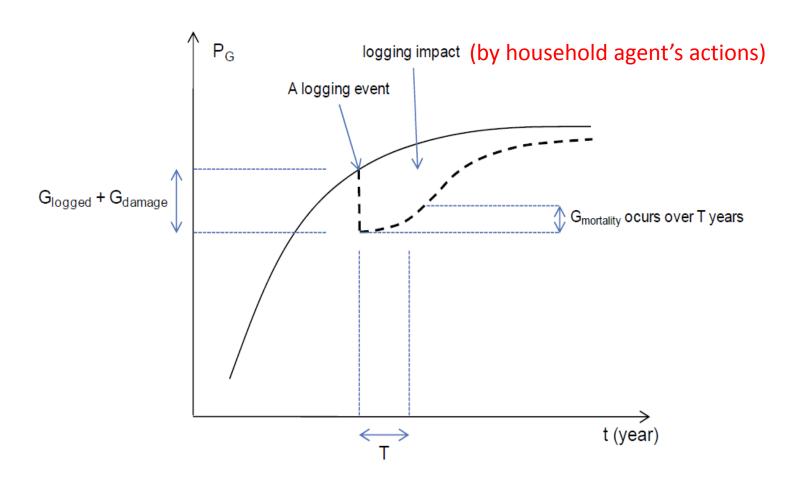
Source: Le (2005); Le et al. (in prep)

d) Wetness index


An environmental dynamic model embodied in landscape agent: P-Forest-Yield-Dynamics procedure

Main function/equation: ${}^tP_G = ({}^{t-1}P_G + {}^{t-1}Z_G) - G_{removal}$ ${}^{t-1}P_G = \text{stand basal area in the previous year (t-1)}$ ${}^{t-1}Z_G = \text{natural increment of stand basal area in the previous year (t-1)}$ $({}^{t-1}P_G + {}^{t-1}Z_G)$ represents the natural dynamics of forest.

Gremovals = the amount of basal area removed from the patch, caused by logging activities of household agents.


Function to calculate Z_G : $Z_G = a(P_G)^{\varepsilon} - b(P_G)$

 $maxZ_G = maximal growth rate of stand basal area (known, fixed)$ $equilP_G = stand basal area at the equilibrium state of the forest stand (known, fixed)$

Function to calculate $G_{removals}$: $G_{removals} = G_{logged} + G_{damage} + G_{mortality}/T$

 G_{logged} = the harvested amount, i.e. the basal area logged by human agent(s), G_{damage} = logging damage, taking place imediately at the time of logging event $G_{mortality}$ = logging-driven mortality, occurring over some years (T) after the logging event

