RESEARCH AND TRAINING PLANS 1986/87 SEASON

International Center for Agricultural Research in the Dry Areas (ICARDA)

Box 5466. Aleppo, Syria

RESEARCH AND TRAINING PLANS

1986/1987

International Center for Agricultural Research in the Dry Areas.

ICARDA

November 1986.

Introduction

These research and training plans for 1986-87 cropping season were prepared after intensive discussions during the cereal program planning meeting held in Aleppo on September 16-18, 1986. Each staff member reviewed his research results of the 1985-86 season with particular emphasis on those findings which influenced the planning of the 1986-87 experiments. Activities that were proposed to be discontinued as well as new ones to be initiated were thoroughly discussed. These planning sessions were attended by ICARDA scientists, directing staff, support staff, and a number of scientists from national programs. This permitted excellent interactions between ICARDA and national program scientists. The projects were critically reviewed by scientists within program, between programs and their relevance to the national programs were assessed. During these sessions collaborative national programs, conferences, workshops, with projects international nurseries as well as the training activities proposed by the program for 1986-87 season were examined.

This document has been prepared after considering the comments received from ICARDA and national program scientists, from Dr. R. Petersen, Consultant biometrician, and keeping in view program priorities and resources. The work plans for collaborative projects with individual national programs have been developed separately and are available on request. They include collaborative work with Algeria, Cyprus, Egypt, Jordan, Lebanon, Morocco, Pakistan, Sudan, Syria, Tunisia and Turkey and a number of institutions in the developed countries.

The research plans for 1986-87 are presented according to the following order: Barley Improvement, Durum wheat Improvement, Bread wheat Improvement, High Elevation Cereal Improvement, International Cooperation, and Training.

Under each heading the field experiments have been grouped according to major activities (breeding, agronomy, pathology, etc.). Within each major activity, different field trials have been grouped according to common objectives, or material, or methodologies. Each trial (or group of trials) is identified by a title followed by the main objective(s) and by the number and/or name of locations. Further details such as plot size, experimental design, number and type of treatments, ANOVA, type of observations to be recorded, scientists involved, and file names where the data will be stored, are provided when applicable or appropriate.

The present list does not include all the research activities carried out in cooperation with other Institutions: these will be included when full details will be available. These research plans have been prepared before the 1986-87 planting and therefore some modification in plot size, and number of replications are possible.

I hope this list of experiments will be of use to ICARDA scientists, administrators as well as to the scientists visiting the program.

J.P. Srivastava

Leader Cereal Improvement Program

November 10, 1986

RESEARCH AND TRAINING PLANS FOR 1986-87

CONTENTS

I.	BARLEY IMPROVEMENT	Pg	2
	Breeding	11	2 3 17
	Agronomy/Physiology	H	17
	Pathology	10	22
	Entomology	10	25
	Grain Quality	11	26
II.	DURUM VHEAT IMPROVEMENT	*	27
	Breeding	11	28
	Agronomy/Physiology	***	35
	Pathology	11	40
	Entomology	11	43
	Grain Quality	11	44
III.	BREAD WHEAT IMPROVEMENT	•	45
	Breeding	11	46
	Agronomy/Physiology	11	59
	Pathology	11	63
	Entomology	11	66
	Grain Quality	11	67
IV.	HIGH BLEVATION CEREAL IMPROVEMENT	•	68
	Breeding	11	69
	Pathology	11	81
	Grain Quality	11	83
V.	INTERNATIONAL COOPERATION	Ħ	84
VT.	TRATNING	•	97

PROJECT I: BARLEY IMPROVEMENT

LIST OF EXPERIMENTS FOR 1986/87

The list of barley experiments for 1986/87 is presented according to the following order:

COMPONENTS		CLASSIFICATION		
I-	BREEDING	1. Evaluation and Utilization of Parents	pg	3
		2. Evaluation of Segregating Populations	11	5
		3. On-Site Testing	**	6
		4. International Testing	11	9
		5. Special Projects	11	10
II-	AGRONOMY/PI	HYSIOLOGY	11	17
III-	PATHOLOGY		n	22
IV-	ENTOHOLOGY		11	25
V-	GRAIN QUAL	ITY	11	26

BARLEY IMPROVEMENT

Breeding: 1. Evaluation and Utilization of Parents

Title Observation nurseries

Objective

1) Evaluation and identification of potential parents suitable for crosses targeted for dry areas, moderate rainfall areas, and high

elevation areas;

2) Supply the national cooperating Institutions with homozygous, stable germplasm promising for yield, agronomic characteristics and

disease resistance.

Location Tel Hadya, Breda, Bouider and 50

locations in the Region.

<u>Design</u> Modified augmented design

Plot size 2 rows, 2.5 m long

<u>Treatment</u> 270 barley lines in three types of nurseries:

BOL :Barley Observation nursery for Dry Areas;

BOC: " " " Cold

tolerance;

BOM : Barley Observation Nursery for Moderate

rainfall Areas.

Observations Growth habit and type 1

Growth habit and type
Days to heading
Plant height
Days to maturity
Protein

1000 kernel weight
Disease score
Plant score
Head score
% Lysine

Kernel size and uniformity Agronomic score

Stability of Performance

Principal scientist S. Ceccarelli

Scientists involved S. K. Yau, E. Acevedo, V. Shevtsov

File name(s) BOC8, BOL8, BOM86.

BARLEY IMPROVEMENT

Breeding: 1. Evaluation and Utilization of Parents

<u>Title</u> Regional Crossing Blocks and Aleppo Crossing Block

Objective To design appropriate genetic combinations in

relation to disease and lodging resistance, drought resistance and other yield limiting factors in the barley growing areas of the Region

Location 45 locations in the Region.

Design Unreplicated

Plot size 2 rows, 2.5 m long

Treatment 144 barley lines in 45 locations:

400 barley lines at Tel Hadya in three planting

dates.

Observations Growth habit and type

Days to heading Disease score Plant height Plant score Head score

Days to maturity 1000 kernel weight

Kernel size and uniformity

% Protein
% Lysine

Stability of Performance

Agronomic score

Principal scientist S. Ceccarelli

Scientists involved V. Shevtsov, S.K. Yau

BARLEY IMPROVEMENT

Breeding: 2. Evaluation of Segregating populations

Title

Multilocation selection of segregating

populations (pedigree)

Objective

Selection among and within families and

comparison of segregating populations targeted

for different areas.

Location

2500 F2's at Tel Hadya and Bouider and 270 F2's

each of three groups (dry areas moderate rainfall areas and high

elevation area).

F3-F4 4500 populations grown only at Tel Hadya

Design

Unreplicated with systematic checks

Plot size

6 rows, 5 m long (4 rows 5 m long for F5-F4)

spaced planted.

Treatment

10500 F2-F4 segregating populations.

Observations

Seedling vigor

Tillering Earliness Plant height

Disease resistance

Agronomic characteristics

Principal scientist

S. Ceccarelli,

Scientists involved

V. Shevtsov

BARLEY IMPROVEMENT

Breeding: 3. On-site Testing

Title Multilocation initial yield trials

Objective: Test yield potential and yield under dry

conditions of lines derived from the pedigree method, bulks handled with the bulk-pedigree,

and of lines selected from landraces

Locations: Bouider, Breda, Tel Hadya.

Design: Modified augmented design (6x6)

Plot size: 10 rows, 2.5 m long

Treatments: 6 trials with 276 test plots, 36 control plots

and 12 sub control plots each.

(324 plots x 6 trials x 3 locations = 5832

plots).

Observations: Seedling vigor

Tillering Earliness Plant height

Disease resistance

Agronomic characteristics

Principal scientist S. Ceccarelli,

Scientists involved V. Shevtsov

BARLEY IMPROVEMENT

Breeding: 3. On-Site Testing

<u>Title</u> Multilocation preliminary yield testing

Objective Test the yielding ability, adaptation and

disease resistance of lines and bulk families

selected from the initial yield trials

in 1985/86

Location Bouider, Breda and Tel Hadya

Design Triple lattice (5x5) at Bouider

Simple lattice (5x5), at Breda and Tel Hadya

Plot size 6 rows, 2.5 m long.

Treatment 20 lines and 5 checks (26 trials x 7

replications = 4550 plots).

 $\frac{\text{ANOVA}}{\text{Entries}} \frac{\text{d.f.}}{\text{24}} (1)$

+ combined analysis

Replications 1 (2)
Blocks 8 (12)
Error 16 (36)
Total 43 (74)

(1) Bouider.

Observations Growth vigour

Growth vigour Days to heading Head size Days to maturity

Plant height Plant type
Disease score Grain yield
1000 kernel weight Grain size DSI
Grain uniformity % protein

% Lysine Diastatic power

Principal scientist S. Ceccarelli.

Scientists involved V. Shevtsov

BARLEY IMPROVEMENT

Breeding: 3. On-Site Testing

<u>Title</u> Multilocation advanced yield testing

Objective Test the yielding ability, disease resistance and adaptation of 230 lines selected from

and adaptation of 230 lines selected from preliminary yield trials in 85/86, 88 lines from landraces, 75 Fs bulk families, and 2Fs

H. vulgare and H. spontaneum

Location Tel Hadya (two planting dates), Breda, Bouider

(in Syria); Terbol (in Lebanon); Laxia (in Cyprus), Ousseltia (in Tunisia), and Morocco

Design Triple lattice (5x5) in Bouider

simple lattice (5x5) in all other locations.

Plot size 10 rows, 5 m long.

Treatment 20 lines and 5 checks (20 trials).

ANOVA Source of var. d.f. Entries 24 (24)

Replications 1 (2)

+ combined analysis
Blocks 8 (12)
Error 16 (36)
Total 19 (74)

Observations Growth habit and type

Growth habit and type Days to heading Head size Days to maturity Plant height Plant type Peduncle length Grain yield

Disease score DSI

1000 kernel weight Grain size Grain uniformity % Protein

% Lysine Diastatic power

Principal scientist S. Ceccarelli

Scientists involved V. Shevstov

BARLEY IMPROVEMENT

Breeding: 4. International Testing

<u>Title</u> Regional Barley Yield Trials

Objective To test the yielding ability, the adaptation

and disease resistance of the most promising genotypes selected among the most widely selected lines in the regionally distributed barley

observation nurseries.

Location 80 Locations in the Region includind Bouider,

Breda and three planting dates at Tel Hadya.

Design Randomized Block Design (4 Replications)

Plot size 6 rows, 2.5 m long

Treatment 23 barley genotypes, and 1 National check

in each of : RBYT C
RBYT L

RBYT M

Observations Growth type

Days to heading Plant height Plant type

Days to maturity Diseases reaction Seed characteristics Yield and yield stability

Principal scientist S. Ceccarelli

Scientists involved S.K. Yau, V. Shevtsov

File name(s) BRC86D, BRL86D, BRM86D

BARLEY IMPROVEMENT

Breeding: 5. Special Projects

a) Introductions

Title Evaluation of newly introduced germplasm

Objective Identification of potential parents

Location Tel Hadya

Design Unreplicated

Plot size 2 rows, 2.5 m long

Treatment IBON (106 genotypes), BYDV (115 genotypes)

CB Cebada (28 genotypes), F2 S x S (183 populations), F2 S x W (85 populations), F2 ZA (107 populations) from CIMMYT MEXICO

F2 (170) and F3(82) from CYPRUS

25 land races from CYPRUS

36 HL from GERMANY

4 from FRANCE

Principal scientist S. Ceccarelli

Scientist involved GRU Scientist

BARLEY IMPROVEMENT

Breeding: 5. Special Projects

b) Evaluation of local cultivars

Title Preliminary evaluation of lines extracted

from local cultivars

Objective Identify promising lines for further evaluation

Location Bouider and Tel Hadya

Design Modified augmented design

Plot size 2 rows, 2.5 m long

Treatment 600 single head progenies divided in 5

trials (12x12 modified augmented design). Each trial includes 120 lines, and 24

control plots.

Observations Growth habit and type

Head size

Plant height Disease score

1000 kernel weight

Days to heading Days to maturity

No. of heads/m2(score)

Grain yield

DSI

Principal scientist S. Ceccarelli

Scientists involved

File name(s) LR8701 to LR8705

BARLEY IMPROVEMENT

Breeding: 5. Special Projects

Title Selection for low and high wilting

Objective To evaluate the efficiency if wilting as

selection criterion to improve grain yield in

stress conditions

Location: Bouider, Breda, Tel Hadya

Design: Triple lattice (6x6)

Plot size 10 rows, 5m long

Treatments 14 Bulk families selected for low wilting,

14 bulk families selected for high wilting,

8 checks

ANOVA Source of var. d.f.

Observations

Principal scientist S. Ceccarelli

Scientist involved

BARLBY IMPROVEMENT

Breeding: 5. Special Projects

Title Evaluation of pure lines vs. mixture

Objective To test yield stability of pure lines selected

from landraces and three mixtures of different

no of lines.

Location Bouider, Breda, T. Hadya, Catania, Hassake

Design Triple lattice

Plot size 6 rows x 2.5 m

Treatments 16 pure lines, 3 mixtures

(with 16, 8 and 4 lines),

3 checks

Principal scientist S. Ceccarelli

Scientist involved N. Boggini (Italy)

BARLEY IMPROVEMENT

Breeding: 5. Special Projects

c) Evaluation of H. spontaneum

Title Evaluation of selected accessions of \underline{H} .

spontaneum.

Objective Further evaluation of H. spontaneum accessions

selected for plant type and their utilization in crosses with two-row improved cultivars and land

races.

Material 37 accessions of H. spontaneum.

Location Bouider

Design Simple lattice design 7x7 (two replications)

Plot size 2 rows, 2.5 m long

Blocks (adj) 12 Error 36

Observations Early growth vigour

Cold tolerance
Days to heading
Plant height
Disease reaction
Leaf senescence

Head size 1000 KW

Principal scientist S. Ceccarelli

Scientist involved GRU Scientist

File name(s) SPON187

BARLEY IMPROVEMENT

Breeding: 5. Special Projects

Evaluation of F₅ families <u>H. spontaneum</u> Title

x H. vulgare.

To evaluate yield under dry conditions. Objective

Bouider Location

RBD with two replications. Design

2 row, 2.5 m Plot size

24 selected F₄ families H. spontaneum x H vulgare and 4 checks (A. Abiad, A. Aswad, Treatment

WI2291, Tadmor).

Early growth vigour Observations

Cold tolerance Plant height No. of heads/m2 Days to heading

Head size

Leaf senescence 1000 kernel weight

Grain yield

S. Ceccarelli Principal Scientist

GRU Scientist Scientist involved

WILD87 File name

BARLEY IMPROVEMENT

Breeding: 5. Special Projects

Title Male sterile facilitated Recurrent Selection

Objective Assemble minor genes for disease resistance

Locations Tel Hadya

Design Unreplicated with systematic control

Plot size 10 x 10 (space planted)

Treatment 9 sterile populations (for scald, net blotch

leaf rust), 3 winter type sterile populations 6 fertile populations for different diseases

(as above).

Observations Selection of fertile plants to be tested in

86/87 as F2 populations.

Principal scientist S. Ceccarelli

Scientists involved J. van Leur, M. Mushref

BARLEY IMPROVEMENT

Physi	ology
-------	-------

Title Screening barley genotypes for coleoptile

length.

<u>Objective</u> To detect differences in coleoptile length of

the matertial used in the crop physiology and

agronomy trials of the barley improvement

projects.

Location Tel Hadya.

Design Completely randomized bloock, 4 replication.

Plot size 18 seeds of each genotype will be seeded in

rows, at 3cm depth, in trays containing humid sand located in a dark germination chamber. The coleoptile length will be recorded to the nearest milimeter when the coleoptiles of the seedlings have been ruptured by their first

leaves.

AVOVA Source of var. Varieties

Reps 3 Error 210 Total 283

Principal scientists E. Acevedo

Scientists involved I. Naji, S. Ceccarelli.

BARLEY IMPROVEMENT

Physiology

Title

Genotype characterization

Objective

Evaluate a theoretically derived hypothesis of crop attributes in terms of their importance in determining suitability for water stress in mediterranean environments. Identify constitutive and adaptive characters.

Location

Tel Hadya, Breda, Bouider, PBI (Cambridge).

Design

Randomized Complete Block, 4 replicates .

Plot size

2.4m x 5m (12 rows x 5m long)

Treatment

71 barley genotypes representing contrasting characters in early vigour, growth at low temperatures, height under stress, flowering date, grain filling period. They will also represent: varieties with high yield potential, varieties with good yield stability, pure lines isolated from landraces, the best varieties from countries served by ICARDA, lines thought to be stress tolerant , promising lines from CIMMYT's program in Mexico.

ANOVA

Source of var.	d.f.		
Varieties	70		
Replications	3		
Error(a)	210		
Total	283		

Observations

Crop establishment

Crop and plant growth and development

Dry matter, green area, ground cover through

the season.

Plant traits: tiller number; leaf number, colour, posture, length, width, thickness, rolling; waxiness, pubescence; tissue water relations; stomatal conductance and CO2

fixation; water extraction; plant height; internode length. Yield and yield components.

Principal scientist

E. Acevedo

Scientists involved

S. Ceccarelli, I. Naji

BARLEY IMPROVEMENT

Agronomy

<u>Title</u> Row spacing, sowing date and depth of barley

genotypes differing in coleoptile length.

Objective To study the effect of four major agronomic

variables on initial canopy development, dry

matter accumulation and ground cover.

Location Tel Hadya, Breda and Bouider

Design 34 Factorial with single replication (blocks

of 9 units with 3 factor interactions

confounded) 81 plots.

Plot size 1.2 m width x 3.5 m long

Treatment Three barley genotypes of similar phenological

development and varying in coleoptile length, sowed at 3 depths, 3, 7 and 10 cm on three seeding dates 15 October (prior to the first rain), 15 November, 15 December, and three row

spacing 10, 20 and 40 cm.

ANOVA Source of var. Blocks 8

Main effects 8
2 Factor interaction 24
Error 40

Total 80

Observations Seedling emergence and emergence rate.

Coleoptile length & subcrown internode length.

Plant number and tillers per square meter.

Ground cover at 7-10 day intervals.

Crop growth and development (Zadocks scale).

Dry matter at anthesis.

Ear number/m₂.

Yield and yield components.

Principal scientist E. Acevedo

Incipal Scientist Di necres

Scientists involved I. Naji, S. Ceccarelli

BARLEY IMPROVEMENT

Physiology/Agronomy

Title:

Influence of soil tillage and planting date on the growth of barley.

Object:

a) To implement a soil tillage operation for dry, early planting.

b) To compare at a relatively large scale the practices of dry, early planting versus planting after enough rain has accumulated to wet the soil profile to a minimum of 10 cm.

Location:

Tel Hadya

Treatment

Tillage at 3 levels and planting date at 2 levels will be combined. The tillage levels will be the the following:

- a) Farmer's practice (duckfoot-broadcast-duckfoot).
- b) Minimum tillage (single pass planter).
- c) Standard tillage (chissel followed by power harrow).

The planting date levels will be:

- a) Dry planting (middle Oct.)
- b) "Wet" planting (middle Dec.)

The dry planting is intended to be an early planting operation, while the 'wet' planting a late one. For experimental purposes and in order to avoid confounding between tillage and planting date, one treatment will be preirrigated to 10 cm soil depth in early October and a dry planting will be made in December by keeping the soil covered with a polyethylene film, and in turn covered with a layer of soil.

The planting depth will be at a minimum of 7 cm. A medium coleoptile varriety will be used for this purpose. (Rihane 03, coleoptile length = 4.27 cm).

Design:

A factorial design (3 x 2 x 2) will be used. The field arrangement will be in a randomized complete block with 4 replications. The plot size will be 6 m x 30 m such that a minimum of two working widths of machinery will be allowed over one plot.

<u>Observations</u>	 Number of emerged plants/m2 Ground cover (10 day intervals) Zadoks score (10 day intervals)
•	 Biological yield
	Crain viold

ANOVA	Source of variation	d.f
	Blocks	3
	A=tillage	2
•	B=Soil water content	1
	C=Sowing date	1
	AB	2
	AC	2
	BC	1
	ABC	2
	Error	33
	Total	47

Scientists in charge E. Acevedo, J. Diekmann, H. Harris

BARLEY IMPROVEMENT

Pathology

Screening for resistance to yellow rust, scald, powdery mildew, net blotch, leaf rust, barley Title

leaf stripe and covered smut.

Objective 1. Identification of new sources of resistance

2. Development of screening techniques (net

blotch)

Location yellow rust: Tel Hadya and Terbol

scald: Tel Hadya, Lattakia, El Ghab and Hassake

powdery mildew: Tel Hadya, Lattakia net blotch: Tel Hadya, El Ghab leaf rust: Lattakia and Jordan

covered smut: Tel Hadya (isolation area)

barley leaf stripe: Tel Hadya (seedling test)

Design Unreplicated with systematic checks

Plot size 2 rows 1 m long or short rows (25 cm long)

Treatment 2000 lines from ICARDA (Barley project

and germplasm unit).

Observations Agronomic score Disease score

Principal scientist J. van Leur

Scientists involved O.F. Mamluk

BARLEY IMPROVEMENT

Pathology

Title Multilocation testing for multiple disease

resistance.

Objective 1. Identification of new sources of multiple

disease resistance

2. Elimination of susceptible materials

Location 18 "hot spot" locations within and outside the

Region.

Design Unreplicated with systematic checks

Plot size 2 rows 1 m long

<u>Treatment</u> Preliminary Disease Nursery: 550 lines

Key Location " : 300 "

Scald Nursery : 100 "

Observations Agronomic score Disease score

Principal scientist J. van Leur

Scientists involved 0.F. Mamluk, and

National Program Scientists,

BARLEY IMPROVEMENT

Pathology:

Screening for barley yellow dwarf virus Title

(BYDV) resistance

Identification of barley genotypes which are Objective |

resistant or tolerant to BYDV infection.

Tel Hadya Location

Three replications, two in the open field and Design

one in the plastic house.

Short rows (35 cm long) Plot size

322 entries, 22 of which are repeated testing Treatment

from the previous year.

Disease rating and agronomic evaluation **Observations**

(biological yield, grain yield, harvest index

... etc).

K.M. Makkouk (GRP) Principal scientist

J. van Leur and O.F. Mamluk Scientists involved

BARLEY IMPROVEMENT

Entomology:

Title Screening for resistance to wheat stem sawfly

Objective To identify sources of resistance to wheat

stem sawfly

Location Tel Hadya (artificial infestations)

Suran (Natural infestation)

Design RCB

Plot size 1 rows, 1m long, 2 reps

Treatment For wheat stem sawfly:

360 lines screened at Tel Hadya and Suran

Observations % Germination

Days of Heading % dead plant Plant hight % solid % infestation Ped.length

No. tillers Stem width.

Principal scientist R. Miller

Scientist involved S. Ceccarelli

BARLEY IMPROVEMENT

Grain Quality

Title Evaluation of barley grain quality

Objective To identify superior genotypes for feeding

purposes as well as malting industries.

Location Three location (Tel Hadya, Breda, Bouider)

Design

Plot size

Treatment breeding lines .

Observations

Kernel weight

Kernel size

Kernel ½ protein

lysine

diastatic power test weight

Principal scientist P. Williams

Scientists involved F. J. El-Haramain, S. Ceccarelli

PROJECT II: DURUM WHEAT IMPROVEMENT

LIST OF EXPERIMENTS FOR 1986/87

The list of durum wheat experiments for 1986/87 is presented according to the following order:

COMPONENTS		CLASSIFICATION			
I-	BREEDING	1. Evaluation and Utilization of Parents	p.	g 28	
		2. Evaluation of Segregating Populations	11	29	
		3. On-Site Testing	97	30	
		4. International Testing	11	32	
		5. Special Projects	11	34	
II- AGRONOMY/PHYSIOLOGY			10	35	
III-	PATHOLOGY		11	40	
IV-	ENTOHOLOGY		***	43	
V –	GRAIN QUALIT	TY	11	44	

DURUM VHEAT IMPROVEMENT

Breeding: 1. Evaluation and utilization of Parents

Title

Parental Material

Objective

1) Evaluation and identification of potential parents with desirable genes for yield, potential and stability disease and insects resistance and good nutritional and technological qualities.

2) Provide the national programs with parental material with a wide range of variability.

for economically important traits.

Location

Tel Hadya (3 planting dates) for the Aleppo crossing Block Landraces, dicoccoides The country germplasm and the Aleppo cros-

sing block at Tel Hadya.

45 locations in the Region for the Regional

Crossing Block (RBC)

Design

Plot size

4 rows 2.5 m long

Treatment

<u>ANOVA</u>

Observations

Growth habit and type
Days to heading
Plant height
Days to maturity
% Protein
Kernel size

Stability of Performance

Disease score
Plant score
Head score

1000 kernel weight

Head score
% Lysine

Agronomic score

Principal scientist

M. Nachit

Scientists involved

National Programs Scientists, O.F. Mamluk, E. Acevedo, R. Miller, and P. Williams.

DURUM VHEAT IMPROVEMENT

Breeding: 2. Evaluation of Segregating Populations

<u>Title</u> Multilocation testing of Segregating

Populations

Objective Selection among and within families for

desirable recombinants. Specific crosses are

included to combine:

a) frost tolerance and earliness

b) drought resistance and heat tolerance

c) Septoria resistance and good agronomic type

d) Common bunt resistance and good agronomic type.

Location Tel Hadya (early planting with irrigation,

rainfed, late planting and isolation area)

Breda, Terbol (summer nursery)

Lattakia

<u>Design</u> Unreplicated with syssematic checks

Plot size 6 rows, 5m

<u>Treatment</u> F2-F₆ segregating populations

ANOVA

Observations Growth habit and type 1000 kernel weight

Days to heading Disease score
Plant height Head score
Days to maturity Kernel size

% Protein

Principal scientist M. Nachit

Scientists involved National Programs Scientists

DURUM VHEAT IMPROVEMENT

Breeding: 3. On-Site Testing

<u>Title</u> Multilocation preliminary yield testing

Objective Test the yielding ability, adaptation, disease

resistance and stability of newly bulked

genotypes in different environments to identify

lines to be promoted to further testing.

Location Tel Hadya (rainfed and irrigated), Terbol

Breda, Cyprus, Tunisia and Jordan

Design Randomized block design.

Plot size 4.5 msq

Treatment 21 lines and 3 checks (16 trials).

 ANOVA
 Source of var. Entries
 d.f. 23

 Replications
 1

 Error
 23

 Total
 47

Observations Plant vigour Days to heading Head size Days to maturity

Plant height Grain yield
Disease score % Protein
1000 kernel weight Test weight

Vitreousness Sedimentation test

Principal scientist M.M. Nachit

Scientists involved National Programs scientists of Cyprus, Morocco

Jordan and Syria. O.F. Mamluk, R. Miller, and

P. Williams.

DURUM VHRAT IMPROVEMENT

Breeding: 3. On-Site Testing

<u>Title</u> Multilocation advanced yield testing

Objective Test the yielding ability, stress tolerance to

drought, heat and cold. Screen for disease and insect resistance, adaptation for the various agroclimatic conditions to identify potential varieties or parental material, and good kernel

quality.

Location Tel Hadya (early planting, rainfed, irrigated and late planting), Breda, Terbol, Tunisia

(Kef, Beja), Cyprus (Laxia, Paphos and Akhela),

Morocco (Kodia, Merchouche), Egypt (Shandaweel), Sudan (W. Midani), Mexico

(Obregon, and Huamantla)

Jordan (Deir Alla, Moshaker), Syria (Himo, Geleen, Izra), Portugal (Elvas), Germany

(Hohenheim).

Design Randomized block design for yield trials at

Tel Hadya (rainfed), Breda & Terbol, and as observation nursery at the other locations

Plot size 9 msq

Treatment 21 lines and 3 checks (10 trials).

 ANOVA
 Source of var. Entries
 d.f. 23

 Replications
 2

 Error
 46

Total 7:

Observations Plant vigour Days to heading

Head size

Plant height

Disease score

1000 kernel weight

Days to maturity

Grain yield

Peduncle length

1000 kernel weight % Protein Vitreousness Test weight

Sedimentation test

Principal scientist M.M. Nachit

Scientists involved National Programs Scientists, O.F. Mamluk

R. Miller and P. Williams

DURUM VHEAT IMPROVEMENT

Breeding: 4. International Testing

<u>Title</u> Regional Yield Trials.

Objective Distribution of promising germplasm to the

national programs.

Location 92 locations for moderate rainfall, 89

locations for low rainfall.

Design Randomized block design.

Plot size 6 rows, 2.5 m lows

Treatment 21 lines and 3 checks (2 trials)

 ANOVA
 Source of var. Entries
 d.f.

 Replications
 2

 Error
 46

 Total
 71

Observations Plant vigour Days to heading Head size Days to maturity

Plant height Plant type
Disease score Grain yield
1000 kernel weight Grain size
Grain uniformity % Protein

Principal scientist M. Nachit

Scientists involved National Programs Scientists, S.K. Yau

File name(s) DRM86D, DRL86D.

DURUM WHEAT IMPROVEMENT

Breeding: 4. International Testing

<u>Title</u> Observation nurseries.

Objective Development and distribution of advanced genetic

material to the national programs.

Location 92 locations for moderate rainfall, 89

locations for low rainfall.

Design Unreplicated with systematic checks.

Plot size 2 rows, 2.5 m long

Treatment 120 lines for moderate rainfall, 120 lines

for low rainfall.

ANOVA

Observations Growth habit and type Days to heading Head size Days to maturity

Head size
Plant height
Disease score
1000 kernel weight

Plant type Grain yield Grain size % Protein

Principal scientist M. Nachit

Scientists involved National Programs Scientists, S.K. Yau

File name(s) DOL86D, DOM86D.

DURUM VHRAT IMPROVEMENT

Breeding: 5. Special Projects

Title Breeding strategies in durum wheat

Objective To compare three methods of selection (pedigree,

modified pedigree and modified bulk).

Location Tel Hadya irrigated, and Tel Hadya rainfed

Design Augmented design

Plot size 6 rows, 5 m long

Treatment 100 crosses for each method

ANOVA Source of var. d.f.

Observations Growth vigor Tillering Plant height Heading

Maturity Grain yield

Head and kernel characteristics

Protein percent

Principal scientist H. Ketata, M.M. Nachit

Scientists involved

DURUM WHEAT IMPROVEMENT

Phys	ic	log	γ
------	----	-----	---

Title Screening durum wheat genotypes for

coleoptile length.

Objective To detect differences in coleoptile length of the

material used in the crop physiology and agronomy trials of the durum wheat improvement projects.

Location Tel Hadya

Design Completely randomized bloock, 4 replication.

Plot size 18 seeds of each generality.

18 seeds of each genotype will be seeded in rows, at 3 cm depth, in, trays containing humid sand located in a dark germination chamber. The coleoptile length will be recorded to the

nearest millimeter when coleoptiles of seedlings have been raptured by their first

leaves.

ANOVA	Source of var	d.f.
	Varieties	19
	Reps	-3
	Error	57
	Total	79

Principal scientist E. Acevedo

Scientists involved I. Naji, M. Nachit

DURUM VHRAT IMPROVEMENT

Physiology/Agronomy

Title Barley and wheat land races phenology.

Objective a. To observe the developmental phases of two land races at various seeding dates through the year

b. To gain familiarity with Tel Hadya environment.

Location Tel Hadya

Design Unreplicated observation trial.

Plot size 4 liter pots.

Treatment One barley landrace, Arabic white, and one

wheat landrace, Haurani, will be seeded in

pots at monthly intervals.

Five pots of each landracewill be seeded

to leave 4 plants per pot at every sowing date The pots, filled with a clayloam mix and irrigated when needed will be kept in the neighborhood of Tel Hadya agroclimatological

station.

ANOVA Non replicated trial.

Observations - Planting date.

- Seedling emergence rate.

- Seedling growth (number of unfolded leaves in

the main shoot).

- Tillering

- Developmnet of the main shoot.

- Stem elongation (number of detectable nodes).

- Booting.

- Ear emergence.

- Anthesis.

- Number of competent florets.

- Dry weight (total and compenents) at anthesis

and harvest.

Principal scientist E. Acevedo

Scientists involved I. Naji.

File Name(s).

DURUM VHRAT IMPROVEMENT

Physiology

Title

Genotype characterization

Objective

Evaluate a theoretically derived hypothesis of crop attributes in terms of their importance in determining suitability for water stress mediterranean environments. Identify constitutive and adaptive characters.

Location

Tel Hadya, Breda, Bouider.

Design

Randomized Complete Block, 4 replicates

Plot size

2.4 m x 5 m (12 rows x 5 m long)

Treatment

20 durum wheat genotypes representing contrasting characters in early vigour, growth at low temperatures, height under stress, flowering date, grain filling period. They will also represent: varieties with high yield potential, varieties with good yield stability, pure lines isolated from landraces, the best varieties from countries served by ICARDA. lines thought to be stress tolerant, promising lines from CIMMYT's programme in Mexico.

Α	N	n	V	Δ
п		v		n

Source of var.	d.f.
Varieties	19
Replications	3
Error(a)	57
Total	79

Observations

Crop establishment

Crop and plant growth and development

Dry matter, green area, ground cover through

the season.

Plant traits: tiller number; leaf number, color posture, length, width, thickness, rolling, pubescence; tissue water relations; stomatal conductance and CO, fixation; plant height;

internode length.

Yield and yield components.

Principal scientist

E. Acevedo

Scientists involved

M. Nachit, I. Naji

DURUM VHEAT IMPROVEMENT

Physiology/Agronomy

Title:

Thermal stress in wheat

Object:

- a) Study the effect of thermal stress on wheat growth development and production.
- b) Assess the physiological effects of the late planting techniques of screening for heat tolerance.
- c) Monitor the selection process for thermal stress tolerance.

Location:

Tel-Hadya

Treatment

A total of 25 entries of bread wheat (22 lines + 3 checks) and 25 entries of durum wheat will be planted at three sowing dates: first week of November, middle of March and end of May, representing normal planting (probable cold stress), terminal heat stress and heat stress during the whole growing period. The entries will be selected such that they represent various stages of selection for heat stress. The plots will be sprinkled irrigated whenever the soil water tension at 40 cm depth reaches 50 cb.

Design:

A split plot experiment with 2 factors, date of sowing at 3 levels and variety (50) in a rand omized complete block design with 3 replicates. The main plots will be assigned to date of sowing and the subplots to varieties. The main plots will be 60 m long 15 m width, each subplot (variety) will be 1, 2 m (6 rows) width and 5 m long.

ANOVA:	Source of Variation	d.f.
	Replicates	2
	Sowing date (A)	2
	Error (a)	4
	Varieties (B)	49
	AB	98
	Error (b)	294
		449

Observation

- Days to emergence
- Crop establishment (plant No/M ²)
- Ground cover (every 10 days)
- Zadoks score (every 10 days)
- Apex development (every 10 days)
- Days to heading
- Dry matter and components (Heading)
- Spikelets/spike, fertile florets
- Leaf photosynthesis at vegetative stage,
 - heading and grain filling.
- Leaf temperatureDays to physiological maturity
- Height
- Biological yield and components at harvest (-1000 kw, - Ht. Weight).

Principal Scientists: E. Acevedo

Scientists involved: G. Ortiz Ferrara, M. Nachit and I. Naji.

DURUM VHEAT IMPROVEMENT

Pathology

Title Screening for resistance to yellow rust, leaf

rust, stem rust, septoria tritici, and common bunt.

Objective Identification of new sources of resistance

and elimination of suceptible material

Location yellow rust: Tel Hadya, Raqqa, Terbol;

leaf rust: Lattakia; T.Hadya (plastic houses)

stem rust: Summer nursery; (Terbol) septoria: Lattakia; Ghab, R. El-Ain common bunt: Tel Hadya (isolation area)

Design Unreplicated with systematic checks

Plot size 2 rows 1 m long or short rows (25 cm long)

Treatment 1700 lines for yellow rust,

1400 for septoria

1000 lines for common bunt 1000 lines for leaf rust 900 lines for stem rust

Observation Disease score,

Agronomic score.

Principal scientist 0.F. Mamluk

Scientists involved J. van Leur

DURUM WHEAT IMPROVEMENT

Pathology

Title Multilocation testing for multiple disease

resistance.

Objective

1. To test advanced breeding material and special purpose lines for their resistance

to the prevailing diseases in "hot spots"

2. To identify new sources of multiple disease resistance and eliminate

susceptible material.

Location 18 "hot spot" locations within and outside the

Region.

Design Unreplicated with systematic checks

Plot size 2 rows 1 m long

Treatment Preliminary Disease Nursery: 360 lines

Key Location " : 250 "
Yellow Rust Nursery : 100 "
Septoria nursery 70 "

ANOVA

Observations Disease score

Agronomic score

Principal scientist 0.F. Mamluk

Scientists involved J. van Leur and

National Programs Scientists.

DURUM VHRAT IMPROVEMENT

Pathology

Title Screening for barley yellow dwarf virus

(BYDV) resistance.

Objective Identification of durum genotypes which are

resistant or tolerant to BYDV infection.

Location Tel Hadya

Design: Three replications, two in the open field and

one in the plastic house.

Plot size Short rows (35 cm long).

Treatment 270 entries, 20 of which are repeated testing

from the previous year.

Observations Disease rating and agronomic evaluation (bio-

logical and yield, grain yield, harvest index

... etc.)

Principal scientist K.M. Makkouk (GRP).

Scientists involved 0.F. Mamluk and J. van Leur.

DURUM WHEAT IMPROVEMENT

Entomology

Title Screening for resistance to wheat stem sawfly

Objective To identify sources of resistance

to wheat stem saw fly.

Location Tel Hadya (artificial infestation)

Suran (natural infestation).

Design RCB.

Plot size 1 rows, 1 m long.

Treatment 2 reps, 360 varieties

Observation: % Germination Ped. length
Days of heading % solidness

Days of heading
Days of maturity

No. of Tillering stem width

Plant height % infesed plant % dead tiller.

Principal scientist R. Miller

Scientists involved M. Nachit

File name

DURUM WHEAT PROGRAM

Grain quality:

Title

Evaluation of durum quality

Objective:

Selection of the best genotypes to make the best following products (spagetti, Bourguol, couscous and local breads)

Location

Tel Hadya

Design

Breda

Plot size

Different designs are utilized

Treatment

Observations

1. 1000 kernel weight & Hectoliter weight

2. Vitreous
3. Pigment

4. % protein5. SDS sedimentation

6. Milling (flour, semolina)

7. Farinograph8. spaghetti making

Principal scientist

P. Williams

Scientists involved

M. Nachit, A. Sayegh

File name

PROJECT III: BREAD WHRAT IMPROVEMENT

LIST OF EXPERIMENTS FOR 1986/87

The list of bread wheat experiments for 1986/87 is presented according to the following order:

COM	PONENTS	CLASSIFICATION		
I-	BREEDING	1. Evaluation and Utilization of Parer	F	og 46
		2. Evaluation of Segregating Population	ns "	47
		3. On-Site Testing	"	
		4. International Testing	"	50
		5. Special Projects	"	52
II-	AGRONOMY/PH	YSIOLOGY		
				59
III-	PATHOLOGY		"	63
IA-	ENTOMOLOGY		"	66
V –	GRAIN QUALIT		pal ma n o	67

BREAD WHEAT IMPROVEMENT

Breeding: 1. Evaluation and utilization of Parents

Title

Evaluation and utilization of parents

Objective

- Evaluation and identification of potential parents with desirable genes for yield, disease resistance good nutritional and industrial quality and other characteristics
- Provide the national programs with parental material with a wide range of variability for economically important traits.

Location

Tel Hadya (3 planting dates) for the Aleppo crossing block and the regional crossing block.

Additionally, 40 locations in the Region for the Regional Crossing Block (169 lines).

Design

Plot size 2 rows 2.5 m long

Treatment

Observations

Growth habit and type
Days to heading
Plant height
Days to maturity
% Protein
Kernel size and uniformit

Kernel size and uniformity Stability of Performance 1000 kernel weight
Disease score
Plant score
Head score
Agronomic score
PSI (%)
WMFT (min)

Principal scientist

G. Ortiz Ferrara

Scientists involved

National Programs Scientists

BREAD VERAT IMPROVEMENT

Breeding: 2. Evaluation of Segregating Populations

<u>Title</u> Hultilocation testing of Segregating

Populations

Objective Selection among and within families for

desirable recombinants by using a modified

bulk method of selection.

Location F2 Tel Hadya (early planting, rainfed

planting) Breda

F3 Breda, Tunis, Mexico (rainfed), Morocco

Egypt, Tel Hadya (early planting)

Design Unreplicated with systematic checks

Plot size

TreatmentF2-Fn segregating populations

<u>ANOVA</u>

Observations Growth habit and type Disease score

WMFT(min)

Agronomic score

% protein PSI (%)

Principal scientist

G. Ortiz Ferrara

Scientists involved National Programs Scientists

BREAD VHEAT IMPROVEMENT

Breeding: 3. On-Site Testing

Title Preliminary yield testing

Objective Testing for yield potential and stability,

disease and insect resistance of newly bulked advanced genotypes in different environments.

Location Tel Hadya (rainfed and supplementary

irrigation), Terbol, Breda

Design Randomized block design.

Plot size 3 msq

Treatment 21 lines and 3 checks (30 trials).

ANOVA Source of var. d.f. Entries 23

Replications 2 Error 46 Total 71

Observations Growth habit and type Days to heading

Head size Days to maturity
Plant height Plant type
Disease score Grain yield
1000 kernel weight Grain size

Grain uniformity % Protein PSI (%) WMFT (min)

Principal scientist G. Ortiz Ferrara

Scientists involved

BREAD WHEAT IMPROVEMENT

Breeding: 3. On-Site Testing

Title Multilocation Advanced yield testing

Objective Testing for yield potential and stability, stress tolerance, earliness and quality.

Specific objectives are to screen for frost and earliness, for heat tolerance and earliness and

for drought tolerance

Location Tel Hadya (early planting, rainfed)

Breda, Terbol, Tunis

Design Randomized block design.

Plot size 6 msq

Treatment 21 lines and 3 checks (15 trials).

ANOVA Source of var. d.f. Entries 23 Replications 2 Error 46 Total 71

Observations Growth habit and type Days to heading

Head size Days to maturity Plant height Plant type Disease score Grain yield 1000 kernel weight Grain size Grain uniformity % Protein PSI (%)

WMFT (min)

Principal scientist G. Ortiz Ferrara

Scientists involved National Programs Scientists.

BREAD WHEAT IMPROVEMENT

Breeding: 4. International Testing

Title Regional Yield Trials.

Objective Distribution of promising material to

national programs in West Asia & North Africa

Location 75 locations in the Region

Design Randomized block design.

Plot size 6 rows 2.5 m long.

Treatment 20 lines and 4 checks (4 replications).

 ANOVA
 Source of var. Entries
 d.f.

 Entries
 23

 Replications
 3

 Error
 69

 Total
 95

Observations Growth habit and type Days to heading

Head size
Plant height
Disease score
1000 kernel weight
Grain uniformity
Days to maturity
Plant type
Grain yield
Grain size
% Protein

PSI (%) WMFT (min)

Principal scientist G. Ortiz Ferrara

Scientists involved S.K. Yau, National Programs Scientists.

BREAD WHEAT IMPROVEMENT

Breeding: 4. International Testing

Title

Observation nurseries.

Objective

Provide genetic material to the national programs for future selection in the Region. Multilocation testing of promising advanced

lines.

Location

50 locations for moderate rainfall.

45 locations for low rainfall.

Design

Unreplicated with systematic checks.

Plot size

2 rows 2.5 m long.

Treatment

102 lines for moderate rainfall.

104 lines for low rainfall.

ANOVA

Observations

Growth habit and type

Days to heading Days to maturity

Head size Plant height Disease score 1000 kernel weight Grain uniformity PSI (%)

Plant type Grain yield Grain size % Protein WMFT (min)

Principal scientist

G. Ortiz Ferrara

Scientists involved

S.K. Yau, National Programs Scientists.

BREAD VHEAT IMPROVEMENT

Breeding: 5. Special Projects

Title Evaluation of new introductions

Objective

Identify new sources of genetic variability for several traits. Introduction and recycling of genetic material (both local and improved) from National Programs in West Asia and North

Africa.

Location Tel Hadya (rainfed and irrigated)

Design

Plot size

2 rows 2.5 m long

Treatment

ANOVA

Observations Growth habit and type

Head size
Plant height
Disease score
1000 kernel weight

Days to heading Days to maturity Plant type Grain yield Grain size

1000 kernel weight Grain size Grain uniformity % Protein

Principal scientist

G. Ortiz Ferrara

Scientists involved

M. Diekmann

BREAD VHRAT IMPROVEMENT

Breeding: 5. Special Projects

Title A study of bread wheat genotypes selected

for drought tolerance.

Objective Determination of plant characteristics and

their variability in a range of bread wheat selected for drought tolerance. Testing and validation of SIMTAG and CERESW growth models.

Location Tel Hadya, four planting dates,

from December to March

Design Randomized Complete Block Design,

three blocks, 12 entries.

Plot size 6 rows, 10 m long

Methodology Field research to estimate genetic parameters

required as input for the growth models.

Comparison of genotypic performance through simulated data from the Tel Hadya environments and other environments with sufficient meteoro-

Yield components

Straw yield

Harvest index

logical data.

Observations Phenological scores

Plant density
Leaf areas
Disease score

Dry and fresh wights

Grain yield

Total plant N and P

Meteorological data

Principal scientist H. Harris , W. Goebel (FSP)

Scientists involved G. Ortiz Ferrara

BREAD WHEAT IMPROVEMENT

Breeding: 5. Special Projects

Title Relationship between seedling vigor and yield

in dry environments.

Objective Identify reliable criteria to select for high

yield in the region.

Location Tel Hadya (Supplementary Irrigation), Terbol,

Breda

Design Randomized Block Design.

Plot size

Treatment

ANOVA	Source of var.	d.f.
	Entries	23
	Replications	2
	Error	46
	Total	71

Observations

Growth habit and type Days to heading Days to maturity

Plant type

Grain yield

Grain size

% Protein

Head size

Plant height Disease score 1000 kernel weight Grain uniformity

Tillering ability

Principal scientist

G. Ortiz Ferrara

Scientists involved

BREAD VHEAT IMPROVEMENT

Breeding: 5. Special Projects

Title

Visual selection versus actual yield to

identify superior F3 lines.

Objective

Study the effect of visual selection for

quantitative and qualitative characters and

yield.

Location

Tel Hadya (early planting supplementary

irrigation). Three locations in the region

Design

Modified augmented design.

Plot size

Treatment

ANOVA

Observations

Growth habit and type

Grain yield

Head size

Days to heading

1000 kernel weight

Plant height.

Principal scientist

G. Ortiz Ferrara

Scientists involved

BREAD VHEAT IMPROVEMENT

Breeding: 5. Special Projects

Title Visual selection as a method for improving

yield of bread wheat in dry environments.

Objective Comparison of selection efficiencies for

identifying high yielding lines in dry

environments. PHASE II

<u>Location</u> Tel Hadya (SIR), Breda

Design

Plot size

Treatment

ANOVA

Observations Growth habit and type

Head size Plant height Disease score 1000 kernel weight

1000 kernel weight Grain uniformity Days to heading Days to maturity

Plant type Grain yield Grain size % Protein

Principal scientist G. Ortiz Ferrara

Scientists involved

BREAD VHEAT IMPROVEMENT

Breeding: 5. Special Projects

Title Heat tolerance screening

Objective To identify parental material for this

stress factor . Incorporation of this

trait into the crossing program.

Location Egypt (New Valley, Kom Ombo, Fayoum)

Tel Hadya late planting, Terbol summer planting

Design

Plot size

2 rows 2.5 m long

Treatment 150 advanced lines.

Observations Growth habit and type Grain yield

Plant height % protein
Disease score Heat score
1000 kernel weight Aphids NO./leaf
Days to heading Aphids NO./Plant

Days to maturity

rity Seedling evaluation.

Principal scientist O. Shehata Khalil, Rashad Abo El-Einen

Scientists involved G. Ortiz Ferrara, E. Acevedo

and N. Rebeiz .

BRRAD VHRAT IMPROVEMENT

Breeding: 5. Special Projects

Title Aphids tolerance screening

Objective To identify parental material with

resistance to this insect pest. Incorporation of this characteristic

into the crossing program.

<u>Location</u> Egypt (Giza, Sids, Shandawil)

Sudan (Vad Medani, New Halfa, Hudeiba)

Tel Hadya.

Design

Plot size

2 rows 2.5 m long

Treatment 150 advanced Bread wheat lines.

Observations Growth habit and type Grain yield

Plant height
Disease score
1000 kernel weight
Days to heading

Heat score Aphids NO./leaf Aphids NO./Plant Seedling evaluation.

% protein

Principal scientist 0. Shehata Khalil, Gallal Yousef,

Days to maturity

Bishara, Nasr El-Din Sharaf El-Din.

Scientists involved G. Ortiz Ferrara, R. Miller .

BREAD VHEAT IMPROVEMENT

Phys	iol	ogy
------	-----	-----

<u>Title</u>

Screening bread wheat genotypes

for coleoptile length.

Objective

To detect differences in coleoptile length of

the material used in the crop physiology

and agronomy trials of bread wheat

improvement projects.

Location

Tel Hadya

Design

Randomized complete block design. 4 replication

Plot size

18 seeds of each genotype will be seeded in rows at 3 cm depth, in trays containing humid sand located in a dark germination chamber. The coloratile level 122

chamber. The coleoptile length will be recorded to the nearest millimeter when

coleoptiles of all seedlings have been

ruptured by their first leaves.

ANOVA

Source of var.	d.f.
Varieties	- 19
Reps	3
Error	57
Total	79

Principal scientist

E. Acevedo

Scientists involved

G. Ortiz Ferrara, I. Naji.

BRRAD VHRAT IMPROVEMENT

Physiology

<u>Title</u>

Genotype characterization

Objective

Evaluate a theoretically derived hypothesis of crop attributes in terms of their importance in determining suitability for water stress. Identify constitutive and adaptive characters.

Location

Tel Hadya, Breda, Bouider.

Design

Randomized complete Block, 3 replicates .

Plot size

2.4 m x 5 m (12 rows x 5 m long)

Treatment

20 bread wheat genotypes representing contrasting characters in early vigour, growth at low temperatures, height under stress, flowering date, grain filling period. They will also represent: varieties with high yield potential, varieties with good yield stability, the best varieties from countries served by ICARDA, lines thought to be stress tolerant, promising lines from CIMMYT's programme in Mexico.

ANOVA

Source of var.	d.f.
Varieties	-19-
Replications	2
Error	38
Total	59

Observations

Crop establishment

Crop and plant growth and development

Dry matter, green area, ground cover through

the season.

Plant traits: tiller number; leaf number color posture, length, width, thickness, rolliing, pubescence; tissue water relations; stomatal conductance and CO₂ fixation; plant height

internode length.

Yield and yield components.

Principal scientist

E. Acevedo

Scientists involved

G. Ortiz Ferrara, I. Naji.

BREAD VHRAT IMPROVEMENT

Physiology/Agronomy

Title:

Heat stress in wheat

Object:

- a) Study the effect of heat stress on wheat growth development and production.
- b) Assess the physiological effects of the late planting techniques of screening for heat tolerance.
- c) Monitor the selection process for thermal stress tolerance.

Location:

Tel-Hadya

Treatment

A total of 25 entries of bread wheat (22 lines + 3 checks) and 25 entries of durum wheat will be planted at three sowing dates: first week of November, middle of March and end of May, representing normal planting (probable cold stress), terminal heat stress and heat stress during the whole growing period. The entries will be selected such that they represent various stages of selection for heat stress. The plots will be sprinkled irrigated whenever the soil water tension at 40 cm depth reaches 50 cb.

Design:

A split plot experiment with 2 factors, date of sowing at 3 levels and variety (50) with 3 replicates. The main plots will be assigned to date of sowing and the subplots to varieties. The main plots will be 60 m long 15 m width, each subplot (variety) will be 1, 2 m (6 rows) width and 5 m long.

ANOVA:	Source of Variation	d.f.
	Replicates	2
	Sowing date (A)	2
	Error (a)	4
	Varieties (B)	49
	AB	98
	Error (b)	294
	_	
	Total	449

Observation

- Days to emergence
- Crop establishment (plant No/M 2)
- Ground cover (every 10 days)Zadoks score (every 10 days)
- Apex development (every 10 days)
- Days to heading
- Dry matter and components (Heading)
- Spikelets/spike, fertile florets
- Leaf photosynthesis at vegetative stage, heading and grain filling.
- Leaf temperature
- Days to physiological maturity
- Height
- Biological yield and components at harvest (-1000 kw, - Ht. Weight).

Principal Scientists: E. Acevedo

Scientists involved: G. Ortiz Ferrara, M. Nachit and I. Naji.

BREAD WHEAT IMPROVEMENT

Pathology

Title Screening for resistance to yellow rust, leaf

rust, stem rust, septoria leaf blotch,

and common bunt.

Objective Identification of new sources of resistance

and elimination of susceptible material

Location yellow rust: Tel Hadya, Raqqa, Terbol

leaf rust: Lattakia; T. Hadya (plastic house)

stem rust: Summer nursery (Terbol) septoria: Lattakia, Ghab, R. El-Ain common bunt: Tel Hadya (isolation area)

Design Unreplicated with systematic checks

Plot size 2 rows 1 m long or short rows (25 cm long)

Treatment 2000 lines for yellow rust,

1500 for septoria.

1500 lines for common bunt. 1200 lines for leaf rust 900 lines for stem rust

Observation Disease score, Agronomic score

ANOVA

Principal scientist 0. Mamluk

Scientists involved J. van Leur

BREAD WHEAT IMPROVEMENT

Pathology

<u>Title</u> Multilocation testing for multiple disease

resistance.

Objective 1. To test advanced breeding material and special

purpose lines for their resistance to the

prevailing diseases in "hot spots"

 To identify new sources of multiple disease resistance and eliminate susceptible material.

Location 18 "hot spot" locations within and outside

the Region.

Design Unreplicated with systematic checks

Plot size 2 rows 1 m long

Treatment Preliminary Disease Nursery: 360 lines

Key Location " : 250 "
Yellow Rust Nursery : 100 "

Septoria nursery : 70 "

Observations Disease score

Agronomic score

Principal scientist 0.F. Mamluk

Scientists involved J. van Leur, National Program Scientists.

BREAD WHEAT IMPROVEMENT

Pathology

Title Screening for barley yellow dwarf virus (BYDV)

resistance

Objective Identification of bread wheat genotypes which

are resistant or tolerant to BYDV infection.

Location Tel Hadya

Design Three replications, two in the open field and

one in the plastic house.

Plot size Short rows (35 cm long)

Treatment 215 entries including 22 for repeated testing.

Observation Disease rating and agronomic evaluation (bio-

logical yield, grain yield, harvest index

... etc).

Principal scientist K.M. Makkouk (GRP)

Scientists involved O.F. Mamluk and J. van Leur.

BRRAD VHRAT IMPROVEMENT

Entomology

<u>Title</u> Screening populations for resis-

tance to wheat stem sawfly.

Objective To identify sources of resistance to wheat

stem sawfly.

Location Tel Hadya: artificial infestation.

Suran: natural infestation.

Peduncle length

% solidness

stem width

Design RCB.

Plot size 1 row, 1 m long.

Treatment 2 replications 360 lines

E reprient 500 anno

% Germination Days to Heading Days to Maturity

% Tillering
Plant Height
% infested plants

% infested tillers

Principal scientist R. Miller

Scientists involved G. Ortiz Ferrara.

File name(s)

Observations

BREAD VHEAT IMPROVEMENT

Grain Quality

Title

Evaluation of bread grain quality

Objective

Selection of the best material for food

processing (two and single layer flat bread,

raised bread).

Location

Tel Hadya (Rainfed, irrigated)

Design

Plot size

Treatment

Observations

1. Hardness

2. % protein

3. Fermentation time.

4. Test weight

5. milling

6. Baking

Principal scientist

P. Williams.

Scientists involved

F. J. El-Haramain, G.Ortiz Ferrara

PROJECT IV: HIGH BLEVATION IMPROVEMENT

LIST OF EXPERIMENTS FOR 1986/87

The list of high elevation experiments for 1986/87 is presented according to the following order:

COME	ONENTS	CLASSIFICATION		
I-	BREEDING	1. Evaluation and Utilization of Parents	pg	69
		2. Evaluation of Segregating Populations	11	71
		3. On-Site Testing	***	73
		4. International Testing	Ħ	75
		5. Special Projects	11	78
II-	PATHOLOGY		**	81
III-	GRAIN OUALT	гy	11	83

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 1. Evaluation and Utilization of Parents

Title

Evaluation of wheat and barley germplasm

from high elevation areas.

Objective

To identify genes for disease resistance

cold tolerance quality adaptation and yield.

Location

Sargaya and Tel Hadya.

Design

Augmented design.

Plot size

4 rows 2.5 m long

Treatment

160 lines

ANOVA

Observations

Growth habit

Days to heading

Plant height
Days to maturity

% Protein

Kernel size and

uniformity Frost damage Agronomic score

Disease score

1000 kernel weight

Yield.

Principal scientist

M. Tahir

Scientists involved

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 1. Evaluation and Utilization of Parents

Title Crossing block.

To develop germplasm with cold tolerance disease resistance and better quality and **Objective**

yield.

Tel Hadya Location

Design

Plot size 2 rows 2.5 m long

150 bread wheat and 150 durum wheat lines. Treatment

100 barley lines.

ANOVA

1000 kernel weight Growth habit **Observations**

Days to Heading Disease score

Plant height Days to maturity

% protein Kernel size and

uniformity Agronomic score.

Cold tolerance.

Principal scientist M. Tahir

Scientists involved National Program Scientists

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 2. Evaluation of Segregating Populations

Title Evaluation of F2-Fn segregating populations of

B.wheat and D.wheat

Objective Multilocation breeding and testing of early

segregating populations-F2

Location T. Hadya, Pakistan (4 locations) Iran (4

locations) Turkey (4 locations) Morocco

Algeria, Afganistan and India (1 location each)

F3-Fn Tel Hadya.

Design

Plot size 6 rows 5 m long

Treatment F2 840 bread wheat and 395 durum wheat

F3-Fn 5576 populations.

ANOVA

Observations Growth habit 1000 kernel weight
Days to heading Disease score

Plant height
Days to maturity

% Protein

Kernel size and Agronomic score uniformity Frost damage.

Principal scientist M. Tahir

Scientists involved National Program Scientists

HIGH-BLEVATION CEREAL IMPROVEMENT

Breeding: 2. Evaluation of Segregating Populations

Title Evaluation of F2 segregating populations

of winter durum and bread wheat.

Objective Breeding and selection of early generation

populations for specific adaptibility

Location Haymana-Turkey .

Design

Plot size 6 rows 5 m long

Treatment 800 bread wheat and 365 durum wheat F2

seg. populations.

ANOVA

Observations Growth habit, Frost damage, diseases score,

Agronomic score, population and intra popula-

tion selections.

Principal scientist M. Tahir (ICARDA), and G. Mizrak (Turkey)

Scientists involved Turkish cereal scientists

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 3. On-Site Testing

Title

Initial yield trials of cold tolerant barley, bread and durum wheat, F5 and F6 populations.

Objective

To test the yield, quality and disease

resistance of newly bulked lines.

Location

Turkey and Tel Hadya.

Design

Augmented design.

Plot size

4 rows 2.5 m long

Treatment

700 bread wheat lines, 330 durum wheat lines

and barley 225 lines

ANOVA

Observations

Growth habit

1000 kernel weight Days to heiding Disease score

Plant height. Days to maturity

% protein

Kernel size and

uniformity

Yield

Agronomic score

Principal scientist

M. Tahir

Scientists involved

HIGH-BLEVATION CEREAL IMPROVEMENT

Breeding: 3. One-Site Testing

Title Preliminary yield trials of cold tolerant

barley, bread and durum wheat.

Objective To test the yield quality and disease

resistance of selected lines.

Location Turkey and Tel Hadya

Design Randomized block design .

Plot size 6 rows 2.5 m long

Treatment 24 barley lines

24 bread wheat lines in each of 3 trials 24 durum wheat lines in each of 3 trials.

| Source of var. | d.f. | Entries | 23 | Replications | 3 | Error | 69 | Total | 96 |

Observations Growth habit 1000 kernel weight

Days to heading Disease score

Days to maturity height.

% Protein

Kernel size and

uniformity Agronomic score

Stability of Performance Frost damage

Yield

Principal scientist M. Tahir

Scientists involved

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 4. International Testing

Title

Cold tolerant bread wheat, durum wheat

and barley observation nursery.

Objective |

To observe the performance of advanced material at national level for disease

resistance, adaptation and yield.

Location

Fifteen high elevation sites in the region,

Sargaya, Terbol, Breda and Tel Hadya

Design

Augmented design.

Plot size

2 rows 2.5 m long

Treatment

150 bread wheat lines 150 durum wheat lines

and 143 barley lines.

ANOVA

Observations

Growth habit

1000 kernel weight

Days to heading

Plant height Days to maturity

Disease score

% Protein Stability of performance

Agronomic score Frost damage

Yield

Principal scientist

M. Tahir

Scientists involved

National program scientists

HIGH-BLEVATION CEREAL IMPROVEMENT

Breeding: 4. International Testing

Screening of winter cereals for cold tolerance Title:

To observe the performance of advanced winter Objective:

cereal (barley, durum and bread wheat) for cold tolerance, disease resistance, adap-

tation and yield.

Ankara-Turkey Location:

Observation rows with systematic checks. Design:

2 rows 2-5m long. Plot size:

1814 lines/cultivars of barley, durum Treatment:

and bread wheat

Growth habit, days to heading, days to Observations:

maturity; plant height, stability of performance, 1000 kw, yield, diseases, agronomic score and frost damage.

M. Tahir and G. Mirzak and Principal scientists

other Turkish scientists.

HIGH-BLEVATION CERRAL IMPROVEMENT

Breeding: 4. International Testing

<u>Title</u> Regional Cold tolerant barley, bread and durum

wheat yield trials

Objective To test cold resistance, yield and disease

resistance of advanced lines.

Location Fifteen high elevation sites in the region

and Tel Hadya

Design Randomized complete block design.

Plot size 6 rows 2.5 m long

Treatment 24 barley lines

24 bread wheat lines and 24 durum wheat lines

ANOVA

Observations Growth habit 1000 kernel weight Days to heading Disease score

Plant height
Days to maturity

% Protein

Kernel size and

uniformity Agronomic score
Stability of performance Frost damage

Yield

Principal scientist M. Tahir

Scientists involved National program scientists

File name(s)

アンファーラーラー

t 7 - 24

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 5. Special Projects

Title Evaluation and utilization of Triticum

and Aegilops species

Objective To derive genes of desirable agronomic

traits for incorporation in durum

and bread wheat.

<u>Location</u> Tel Hadya , Breda and Sarghaya.

Design

Plot size 2 rows 2.5 m long

<u>Treatment</u> 1650 Aegilops and wheat species and seg.

populations (F_1-F_5) .

ANOVA(1)

Observations Growth habit and type 1000 kernel weight Days to heading Disease score

Days to heading Plant height.

Days to maturity

% Protein
Kernel and
uniformity
Total biome

uniformity Agronomic score
Total biomass Frost damage
Grain yield.

Principal scientist M. Tahir

Scientists involved GRU Scientists.

HIGH-ELEVATION CEREAL IMPROVEMENT

Breeding: 5. Special Projects

<u>Title</u>

Introduction and evaluation of exotic winter

type durum and bread wheat material.

Objective

Evaluation of new winter type wheat

lines/varieties for direct or indirect use in the germplasm develoment for high altitude areas of ICARDA region. To develop cooperation with the other national and international wheat

breeding programs.

Location

Tel Hadya

Design

Yield trials in RCB 4 Replications. Observation

Nurseries Augmented design.

Plot size

Yield trials (IWWPN) 6 Rows 2.5 m long and Observation Nurseries 2 rows 2.5 m long

Treatment

Two yield trials 30 entries each. Observation

Nurseries (216 IWSWSN + 26 Irani + 200 Turkish)

ANOVA

Observations

Growth habit and type

Days to heading Plant height.

Plant height.
Days to maturity

Protein

1000 kernel weight

Disease score Frost Damage

Yield

Principal scientist

M. Tahir

Scientists involved

HIGH-BLEVATION CEREAL IMPROVEMENT

Breeding: 5. Special Projects

Title: Evaluate bread and durum wheat advanced lines

to identify genetic differences in premordia

development.

Objective: Screening of advanced bread and durum wheat

lines for cold/frost tolerance and earliness on

the basis of primodia development.

Locations: Tel Hadya

Design: RCB, 3 replications

Plot size: 2 rows 2.5m long.

Treatment 30 entaries each of durum and bread wheat.

ANOVA:

Observation: Growth habit

Days heading Days to maturity Plant height, 1000 kw,

Disease score, Frost damage,

Yield and primodia development readys,

Principal Scientsits M. Tahir and T. Hoshino

HIGH-BLEVATION CERRAL IMPROVEMENT

Pathology

Screening for resistance to yellow rust Title

and common bunt.

Identification of new sources of resistance Objective

and elimination of susceptible material

Location

yellow rust: Tel Hadya common bunt: Tel Hadya (Isolation area)

Unreplicated with systematic checks

Design 2 rows 1 m long

Plot size

400 from ICARDA, for Yellow rust 400 from ICARDA, for Common bunt Treatment

Disease score **Observations**

O.F. Mamluk Principal scientist

J. van Leur Scientists involved

HIGH-ELEVATION CEREAL IMPROVEMENT

Pathology

Title: Screening of T.dicoccoides and T.monococcum

for BYDV, yellow rust and common bunt

Objective Identification of new sources of disease

Locations Tel Hadya

Design Unreplicated with systematic checks.

Plot size 2 rows 1m long.

Treatment: 245 lines of T. dicoccoides and 181 of

T. monococcum

Observations Disease score

Principal scientists O.F. Mamluk for yellow rust and common bunt

K. Makkuk for BYDV.

Scientists involved J. van Leur, and M. Tahir.

HIGH-ELEVATION CEREAL IMPROVEMENT

Grain Quality

Title Evaluation of Triticum and Aegilops species

Objective To derive desirable grain quality gene(s) for

incorporation in new wheat germplasm. Testing of

new lines/varieties for grain quality.

Location Tel Hadya

Design

Plot size 4 rows, 2.5 meter each

Treatment 250 lines

ANOVA

Observations 1. 1000 kernel weight

Test weight
 % Protein
 Hardness

Fermentation time
 SDS sedimentation

Principal scientist P. Williams

Scientists involved M. Tahir, F.J. Haramain

GRU Scientist.

COLLABORATIVE PROJECTS

Title Survey of cereal insects in Syria

Objective To systematically survey in detail important

cereal insect pests in Syria.

Location Syria.

Sampling Methods Vary with target insects

Observations Qualitative and quantitative population

description initially concentrating on wheat stem sawfly, suni bug, Hessian fly,

aphids

Principal scientist R. Miller,

Scientists from National program

Scientists involved

COLLABORATIVE PROJECTS

Collaboration with U.S. Institution to be named later by USAID

Title

Screening wheat and barley for resistance

to Hessian fly

Objective

To identify sources of resistance to

Hessian fly

Location

Morocco.

Design

Plot size

Treatment

Observations

Principal scientist

National Scientists from Morocco,

R. Miller, M. Mekni

Scientists involved

COLLABORATIVE PROJECTS

Title Screening for resistance to cereal aphids

Objective To identify sources of resistance

to cereal aphids.

Location Egypt: artificial infestation and natural

infestation.

Sudan: natural infestation, 3 locations.

Design Augmented design.

Plot size 2 rows, 2.5 m long.

Treatment 144 lines of barley (F3-86)

210 lines of durum (ADYT-86)

160 lines of bread wheat (WCB-86)

Observations % Germination.

% infested Plant

% dead plant.

Visual score from 1 to 5.

aphid identification, weather maxmin temps,

rainfall/irrigation

Principal scientist National Scientists from Egypt and Sudan

Scientists involved R. Miller, G. Ortiz Ferrara

M. Nachit, S. Ceccarelli.

COLLABORATIVE PROJECTS

Title

Evaluation and Documentation of Durum Wheat Germplasm

Objective

The objective of the project is to provide and international cooperating institutions involved in durum wheat breeding with comprehnesive data base comprising substantial information on morphological and agronomic characters, disease resistances, stress tolerances, of five thousands germplasm accessions different origins. Concurrently multiplication is being carried out. The project includes the following sub-projects and locations where the same accessions will be evaluated.

- Characterization and evaluation of 5000 durum germplasm accessions, at Tel Hadya and Breda.
- 2. Evaluation of 5000 durum accessions for Yellow rust and Common bunt resistance at Tel Hadya.
- 3. Evaluation of 5000 durum accessions for grain quality characteristics at Tel Hadya.
- 4. Multiplication, storage and distribution of 5000 durum accessions.
- Documentation of the data on 5000 durum accessions collected from Tel Hadya and Breda.
- 6. Evaluation of 5000 durum accessions for Agronomic, and morphological characters as well as diseases resistance at INRA, Tunisia.
- 7. Evaluation of 8000 durum accessions for electrophoretic analysis at University of Tuscia, Viterbo, Italy.
- 8. Further evaluation of 225 durum accessions for tolerance of combined effects of cold, drought at Breda and Tel Hadya.
- Further evaluation of 225 durum accessions for the tolerance to the combined effect of cold, drought and soil salinity, at Hegla.

COLLABORATIVE PROJECTS

Evaluation and Documentation of Durum Wheat Title

Germplasm

Characterization of 5000 durum germplasm Sub-project I

accessions and evaluation of their adaptation to moderate (Tel Hadya) and severe (Breda)

drought conditions

Tel Hadya and Breda Location

5000 accessions Treatment

Augmented design (3 checks) Design

Tel Hadya: 4 rows, 2.5 cm long Plot size

Breda: 1 rows, 30 cm long

For both locations: Observation

Early vigour, days to heading, productive

Tillering capacity, Days to maturity

Plant height, Agronomic score

Only for Tel Hadya:

Emergence, growth habit, Awnedness,

Waxiness of plant, lodging resistance, spike

length, spike density, number of seeds/spikelet, yield.

J.P. Srivastava, B. Somaroo, A.B. Damania Principal scientists

P. Annicchiarico, L. Peccetti (in both locations) Scientists involved

B. Humeid (in Tel Hayda).

CEREAL IMPROVEMENT PROGRAM COLLABORATIVE PROJECTS

Title:

Evaluation and Documentation of durum wheat

Sub-project II:

Evaluation of 5000 durum accessions for yellow rust resistance and for common bunt resistance in the field under artificial epiphytotics conditions.

Locations:

Tel Hadya

Treatment:

5000 accessions under artificial inoculation

Design:

Unreplicated plots with 2 checks.

Plot size:

1 row, 30 cm long

Observation:

Yellow rust susceptibility, common bunt (according to standard reading scale).

Principal scientist:

J.P. Srivastava, O.F. Mamluk, A.B. Damania

Scientists involved:

L. Pecetti, P. Annicchiarico.

COLLABORATIVE PROJECTS

Evaluation and Documentation of

Durum Wheat Germplasm Title

Evaluation of 5000 durum accessions for grain Sub-project III

quality characteristics.

Tel Hadya

5000 durum accessions grown at Tel nauy-Location

Treatment

under rainfed conditions.

Design P x P simple augmented design,

with 2 checks.

Plot size 4 rows, 2.5 m long.

Observations 1000 kernel weight, vitreousness, seed

colour. Protein content,

Principal scientists J.P. Srivastava, A.B. Damania

Scientists involved A. Sayegh, F.J. Haramain, L. Pecetti

P. Annicchiarico.

COLLABORATIVE PROJECTS

Title

Evaluation and Documentation of Durum Wheat

Germplasm

Sub-project IV Multiplication, storage and distribution

of 5000 durum accessions.

Location

Tel Hadya

Treatment

Design

Plot size

Principal scientists

B. Somaroo , A.B. Damania

Scientists involved

B. Humeid

COLLABORATIVE PROJECTS

Title Evaluation and Documentation of Durum Wheat Germplasm

Documentation of the data on 5000 durum Sub-project V

accessions collected from Tel Hadya and Breda

Tel Hadya. Location

B. Somaroo, A.B. Damania, J.P. Srivastava Principal Scientist

P. Annicchiarico, L. Pecetti Scientists involved

COLLABORATIVE PROJECTS

<u>Title</u> Evaluation and Documentation of Durum Wheat

Germplasm

Sub-project VI Evaluation of 5000 durum accessions for

morphological and Agronomical characters

and disease resistance

Location INRA, Tunisia

Principal Scientist M. Daaloul

Scientists involved T. Dalel, H. Moncef

COLLABORATIVE PROJECTS

Title Evaluation and Documentation of Durum Wheat

Germplasm

Sub-project VII Evaluation of 8000 accessions of durum

wheat for electrophoretic analysis

Location University of Tuscia, Viterbo, Italy

Observation: 15 single seed analysis per accession

Principal scientist E. Porceddu,

Scientists involved Dominici, Grottannelli

File name:

COLLABORATIVE PROJECTS

Title Evaluation and Documentation of Durum Wheat

Germplasm

Sub-project VIII Further evaluation of durum accessions

for drought tolerance

Location Breda and Tel Hadya

Treatment 225 accessions (selected from 85-86)

Design Simple Lattice design with two checks

Plot size 6 row, 2.5 m long

Observations Emergence/Early vigour

Days to heading
Plant height
Days to maturity
Agronomic score

Yield

Principal scientists J.P. Srivastava, A.B. Damania

Scientists involved L. Pecetti, P. Annicchiarico, Maria La Pecetti

COLLABORATIVE PROJECTS

Title Evaluation and Documentation of Durum Wheat

Germplasm

Sub-project IX Further evaluation of durum accessions for

tolerance to the combined effect of cold,

drought and soil salinity.

Location Hegla

Treatment 225 accessions (selected from 85-86)

Design triple lattice design, with 3 check.

Plot size 4 row, 2.5 m long

Observation Emergence/Early vigour

Agronomic score; 3 times:
- Vegetation phase

- heading stage

- maturity

Principal scientists J. P. Srivastava, A.B. Damania

Scientists involved P. Annicchiarico, L. Pecetti.

TRAINING 1987

Training activity	No.of candidates	Duration and place	Country	Source of funds
1. Residential course	15	3 1/2 months (1 March-18 June)	Syria, Turkey, China, Egypt, Morocco, Algeria Iran, Yemen AR,	ICARDA and other sources: (USAID, AOAD, etc)
			Sudan, Pakistan,	
			Iraq, S.Arabia Jordan, Tunisia,	
2. Short courses:			Lybia	
a. Barley improvement	10	2 weeks: (1-12 March) Aleppo,Syria	China, Morocco Algeria,Ethiopia Turkey,India,Iran Egypt, Syria,Jordan	ICARDA
			Dgypt, Dylla, Soldan	
b. Cereal disease	6	2 weeks	Syria, Morocco,	ICARDA
methodology		(1-15 April) Aleppo,Syria	Algeria, Turkey Ethiopia, Oman	
 Germplasm Evaluation of cereal landraces 	10	2 weeks (10-21 May)	Syria, Tunisia,	ICARDA
and wild relatives		Aleppo,Syria	Turkey, Jordan, Iran Ethiopia, Algeria, India Pakistan	

(d. In-country course: Cereal (and Food legume) improvement		1 week (April) Sidi Bel Abbas	Algeria	Algeria/France/ ICARDA
•	Cereal and Food legume improvement	25	1 week (June) Sidi Bel Abbas	Algeria	Algeria/France ICARDA
1	E. In country course Breeding strategies for Cereal improvement	20	4 days (September) Cairo	Egypt	ICARDA
3.]	Individual Training				
ā	. Research associate				
-	- Interspecific hybridization	2	2 weeks (April)	Turkey, Iran	ICARDA
-	- Grain quality	4	2 weeks (Feb.)	Turkey, Morocco Algeria	ICARDA
-	Physiology/Agronomy	1	2 months (March-April)	Syria	ICARDA
		1	1 month (15 March-15 April)	Turkey	ICARDA
1	On-farm trials	2	3 weeks (April-May)	Tunisia Jordan	ICARDA
-	Entomology	2	2 weeks (1-15 April)	Syria, Egypt Iran	ICARDA
HIS	Statistical data analysis	5	2 weeks (JanFeb.)	Syria, Algeria	ICARDA
t -	Senior research associate Barley improvement	1	4 months	Syria	ICARDA

c. Research scholar (degree train - Cereal physiology (MSc.) - Cereal physiology (MSc.) - Cereal physiology (Ph.D) - Durum wheat breeding (Ph.D) - Wheat breeding (Ph.D) - Cereal physiology (Ph.D) - Stress physiology (Ph.D) - Barley pathology (MSc) - Barley pathology (MSc) - Barley pathology (MSc)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	year year year year year year year year	Spain Sudan Spain Germany (FR) Tunisia Tunisia Algeria Lebanon (AUB) Morocco	self-financed ICARDA self-financed Self-financed ICARDA
- Stress physiology - Bread wheat breeding - Barley improvement - Barley pathology/breeding - Cereal pathology - Barley improvement - Barley improvement - Barley improvement	1 3 1 1 1 3 1 2 1 1 1 1	months month month months weeks month month month	Sudan Sudan Turkey Ethiopia Portugal Nepal China Egypt	OPEC OPEC ICARDA ICARDA USAID ICARDA ICARDA ICARDA ICARDA