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Drought stress linked with climate change is one of the major constraints faced by
common bean farmers in Africa and elsewhere. Mitigating this constraint requires the
selection of resilient varieties that withstand drought threats to common bean production.
This study assessed the drought response of 64 small red-seeded genotypes of common
bean grown in a lattice design replicated twice under contrasting moisture regimes,
terminal drought stress and non-stress, in Ethiopia during the dry season from November
2014 to March 2015. Multiple plant traits associated with drought were assessed for their
contribution to drought adaptation of the genotypes. Drought stress determined by a
drought intensity index was moderate (0.3). All the assessed traits showed significantly
different genotypic responses under drought stress and non-stress conditions. Eleven
genotypes significantly (P ≤ 0.05) outperformed the drought check cultivar under both
drought stress and non-stress conditions in seed yielding potential. Seed yield showed
positive and significant correlations with chlorophyll meter reading, vertical root pulling
resistance force, number of pods per plant, and seeds per pod under both soil moisture
regimes, indicating their potential use in selection of genotypes yielding well under
drought stress and non-stress conditions. Clustering analysis using Mahalanobis distance
grouped the genotypes into four groups showing high and significant inter-cluster
distance, suggesting that hybridization between drought-adapted parents from the groups
will provide the maximum genetic recombination for drought tolerance in subsequent
generations.
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and
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1. Introduction
Common bean (Phaseolus vulgaris L.) is one of Africa's most
essential pulses [1]. Among the grain legumes cultivated
in Ethiopia, dry beans are regarded as the most important
crop for food security and wealth creation [2]. An overview of
four years' data from 2011 to 2014 indicates that more than
337,000 ha were dedicated to production of 455,000 tons of
common beans annually [3]. Common bean contributes to the
national economy as both a food and an export commodity,
in both cases serving as a source of income and employment
to a large supply chain [4]. The crop provides vital nutrients
as a food including vitamins, proteins, and minerals and the
stems are also used as fodder for livestock, especially in the
dry spell following the main cropping season [5]. As a legume,
common bean plants also contribute to soil fertility enhance-
ment through atmospheric nitrogen fixation [1].

Drought stress, both as a seasonal phenomenon and as part
of climate change, is currently the leading threat to the world's
food supply [6]. This stress is more severe than other abiotic
stresses in common beans, making it themain challenge to the
livelihood of bean farmers in marginal, unfavorable environ-
ments [2,7]. Most common bean production in the developing
world occurs under conditionswhere the risk of drought is high
[7,8]. Numerous regions where drought is already a challenge in
Africa, such as Ethiopia, will suffer from warmer and succes-
sively drier weather as a result of climate change over the next
few decades [9].

Several studies have revealed the radical effect of drought
stress on common bean performance. Exposure to drought
affects total biomass and seed yield, photosynthate transloca-
tion and partitioning, number of pods and seeds per plant, root
length and mass, and maturation time [2,10–12]. In common
bean, drought stress during flowering andpost-flowering caused
reductions of 60–99% in yield [13,14], 25.4% in number of pods
per plant, 20.3% in numbers of seed per pod [15], and 11% in
seed size [2].

The average national yield of common bean in Ethiopia is
estimatedat 1300 kg ha−1 on smallholder farmsand1700 kg ha−1

on commercial farms [16] in contrast to a production poten-
tial of 3000 to 4000 kg ha−1 in research fields [7,17,18]. It
is generally assumed that drought problems in crop produc-
tion can be resolved by applying irrigation, but most African
farmers are resource-constrained and lack access to irriga-
tion water [14]. In addition, many farmers grow beans in
uneven terrain not suitable for irrigation [7,14]. The best option
for reducing such yield gaps and realizing yield stability under
unfavorable environments is thus the development and de-
ployment of drought-tolerant varieties. Drought tolerance,
once genetically encoded in the seed of a variety, can be used
readily by many farmers for combating drought effects in
common bean production [2]. Availability and use of high-
yielding drought-tolerant varieties of common bean would
decrease dependence on irrigation water and thereby reduce
cost of production, stabilize yield in drought-prone areas, and
ultimately increase profit margins for farmers.

Breeding for drought-tolerant crops is challenging and
time-consuming, owing to the need for simultaneously con-
sidering multiple abiotic and biotic factors modulating the
Please cite this article as: K. Darkwa, et al., Evaluation of comm
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level of drought-tolerance. Previous attempts made to
evaluate genotypes for drought tolerance indicated high
levels of drought tolerance in Durango landraces and some
Mesoamerican common bean cultivars [19–21]. Genotypic
evaluation studies in Ethiopia identified drought tolerant
genotypes and selection traits for improving drought adapta-
tion in common bean [2,10,14]. The present study assessed
multiple adaptive traits for their relative contribution to
drought adaptation of the genotypes and combined this
assessment with clustering analysis to identify divergent
trait progenitors and candidate varieties for use in hybridiza-
tion to gain maximum genetic recombination for drought-
tolerance in subsequent generations.
2. Materials and methods

2.1. Experimental design and trial management

This study used 64 genotypes, of which one was bred
locally for drought adaptation and the rest were introduced
from the International Center for Tropical Agriculture (CIAT
by its Spanish acronym), Cali, Colombia (Table S1). These
genotypes were generated from crosses between well-known
sources of drought resistance. The SCR lines are small red
beans carrying drought tolerance with recessive genes for
resistance to bean common mosaic virus. Hawassa Dume,
a small red-seeded Mesoamerican bean type bred locally for
its disease tolerance, seed color, and yield advantage under
water deficit conditions and released in Ethiopia in 2008,
was used as a locally adapted variety check. A few advanced
breeding lines (SER16, RCB745, and SXB412) were included as
additional checks.

The genotypes were evaluated in 8 × 8 simple lattice design
experiments with two replications, each repeated under two
moisture regimes for a total of four replicates evaluated. The
first treatment was non-stress (NS), in which the genotypes
were irrigated until maturity whenever soil moisture was
depleted to 30% field capacity. The second treatment was
drought stress (DS), in which the genotypes were irrigated up
to the mid-pod stage when soil moisture was depleted to
30% field capacity and thereafter the irrigation was halted until
maturity, thus exposing the genotypes to terminal drought
stress. The plots consisted of two rows 3 m in length using
60 cm between-row and 10 cm within-row spacing. Across
both treatments, a total of 100 kg ha−1 diammoniumphosphate
fertilizer was applied at planting and the plots were hand-
weeded once before flowering.

The experiment was performed during the dry season at
the Hawassa Agricultural Research Center, South Nations,
Nationalities and People's Regional State (SNNPR) from
November 2014 to March 2015. Hawassa is located at 7°03′ N
and 38°30′ E at an elevation of 1650 m.a.s.l. with average
annual rainfall of 959 mm distributed mainly in the rainy
season (May to August). The site had well-drained sandy
loam soil of pH .7. The daily average maximum and mini-
mum temperatures of the site during the growing season
were 26.9 °C and 12.4 °C, respectively, and the genotypes
were planted in the dry season when additional moisture
from rainfall was unlikely. Daily precipitation and minimum
on bean (Phaseolus vulgaris L.) genotypes for drought stress
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and maximum temperatures were recorded with a digital
mobile weather station located at the experimental field in
Hawassa to confirm the low-rainfall regime. Soil moisture
content was determined with Aquaterr digital soil mois-
ture, temperature and salinity meter (Aquaterr instruments
and automation, USA) at sample points of 10, 20, and 40 cm
soil depth during flowering, mid-pod filling and maturity
stages.

2.2. Plant trait measurements

Physiological traits of genotypes were assessed by mea-
surement of multiple plant attributes using nondestructive
sampling at different growth stages of the crop. The traits
measured were 1) days from sowing to flower opening
of at least one flower on 50% of plants in a plot (days to
flowering, DF); 2) days to maturity (DM) based on number
of days from sowing to physiological maturity of at least
90% of the plants in a plot; 3) leaf chlorophyll content
measured by SPAD chlorophyll meter reading (SCMR) at
mid-pod filling stage, about one month after flowering
and before harvest maturity on 10 fully expanded young
leaves of three plants in each plot using a non-destructive,
portable SPAD-502 chlorophyll meter (Minolta Camera Co.,
Ltd., Japan); 4) plant height (PLHT) was also measured at
mid pod filling stage on five plants per plot using meter
stick, and the final measurements were recorded at har-
vest and included; 5) vertical root pulling force resistance
(RPF); 6) number of pods per plant (PDPL); 7) number of
seeds per pod (SDPD); 8) 100 seed weight (100 SW); and
9) seed yield per hectare (YLDH). RPF was measured on
five plants per plot using IMADA-DS2 digital force gauge
(Cole-Parmer instrument company LLC, U.S.A.) by tying
a string to the stem of the plant just above the ground
and pulling it upward. PDPL and SDPD were recorded by
counting the pods and seeds of five randomly selected
plants. Seed yield was recorded on a plot basis using
FX3000i sensitive digital balance with a capacity of mea-
suring up to 3200 g and 0.01 g scale (A&D Engineering LLC,
U.S.A.), which was also used to determine 100 SW as a
random sample of total yield. Finally, yield was corrected
based on seed moisture content determined with a seed
moisture meter (Dickey John corporation, U.S.A.). The plot
yield was converted to yield per hectare after adjusting to
12% moisture content.

2.3. Statistical analysis

A general linear model (GLM) was used for data analysis
and LSD at P ≤ 0.05 was used for mean separation. Data from
each growing environment were analyzed separately and the
homogeneity of error variances was tested by Bartlett test [22]
before combined analyses were performed. Simple correlation
coefficients among traits were determined using the mean
trait values for genotypes. All data were used in an analysis
of variance (ANOVA) using the GLM procedure in SAS v. 9.4
software (SAS Institute, 2012).

In addition to the direct measurements, some derived
variables were calculated from primary data: drought inten-
sity index, drought susceptibility index, drought tolerance
Please cite this article as: K. Darkwa, et al., Evaluation of comm
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index, mean productivity, geometric mean productivity, yield
reduction rate, and yield stability index [23–26].

Drought intensity index ¼ 1−XDS

XNS
½23�

Drought susceptibility index ¼ 1−YDS=YNS

1−XDS=XNS
½23�

Drought tolerance index ¼ YDSYNS

X2
NS

½24�

Mean productivity ¼ YDS þ YNSð Þ=2 ½25�

Geometric mean productivity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YDSYNS

p
½24�

Yield reduction rate %ð Þ ¼ YNS−YDS

YNS
� 100 ½25�

Yield stability index ¼ YDS=YNS ½26�

where YDS and YNS are the mean yields of a given genotype
evaluated under drought stress and non-stress conditions,
respectively, and XDS and XNS are the mean seed yields over
all genotypes evaluated under drought stress and non-stress
conditions, respectively. Principal component analysis was
employed to identify traits with more contribution in to
the principal components. Clustering of genotypes was per-
formed using the average linkage method, using the 14 phe-
notypic traits evaluated under drought-stress treatment and
six drought indices. Traits with Eigenvectors greater than or
equal to 1 were considered in the cluster formation and the
ideal number of clusters was determined by looking at the
agreement between cubic clustering criterion, pseudo F and
pseudo-t 2 statistics between groups [28]. Genetic distances
between the centroids of clusters were calculated as stan-
dardized D2, based on suggestions of Mahalanobis [29].
3. Results

3.1. Weather and soil moisture

The maximum and minimum daily temperatures and the
daily rainfall received during the crop-growing period are
presented in Fig. 1. The DS and NS treatments received a total
of 51.8 mm rainfall during the growing season in only three
rain events, creating moisture-stress conditions for the DS
treatment. The amounts of water in the soil profile through-
out the crop growth period are shown in Fig. 2 for DS and
NS conditions, respectively. Drought stress resulted in 29.8%
reduction in YLDH, 26.1% reduction in SCMR, and 19.1%
reduction in PDPL (Table 1).

3.2. Yield-related traits

Data from NS and DS treatments were compared to assess the
effect of drought stress on yield-related traits and the datasets
were combined after a test for homogeneity of error variance
confirmed the appropriateness of a global ANOVA treating
genotypes as fixed and environments as random. The mean
on bean (Phaseolus vulgaris L.) genotypes for drought stress
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Fig. 1 – Rainfall distribution and maximum and minimum temperatures during crop growing period at Hawassa.
Source: Agro-Meteorology Department, Hawassa Agricultural Research Center.
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square values for DM, PLHT, and SCMR were highly significant
(P ≤ 0.01) between genotypes, between treatments, and for
genotype-by-treatment interaction (Table 1). A significant
difference (P ≤ 0.01) was also observed between genotypes
for RPF. DM ranged from 94 to 107 days with mean of 102 days
in the NS treatment and from 82 to 99 days with mean of
89 days in the DS treatment.

Exposure to drought caused a mean reduction of 13 days
(12.7%) in DM compared to the NS treatment. SCR16 and BSF10
were the earliest to mature (95 days) in the NS treatment,
while Hawassa Dume (106 days) and BFS29 (107 days) were
late to reach physiological maturity in the NS treatment.
Under drought stress, BFS10 and BFS55 were earliest to reach
physiological maturity (82 days) and were the highest-yielding
varieties. The genotypes SCR27 (98 days) and SCR25 (99 days)
were late to reach physiological maturity in the DS treatment.
Fig. 2 – Soil moisture content measured at three different soil de
non-stress conditions at Hawassa from November 2014 to March
MPF: mid-pod-filling stage; PM: physiological maturity stages.

Please cite this article as: K. Darkwa, et al., Evaluation of comm
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With respect to plant architecture, PLHT ranged from 24.0
to 47.5 cm with mean of 37.3 cm for the NS and from 24.8 to
43.8 cmwith amean of 31.8 cm for the DS treatments. Amean
reduction of 5.5 cm in PLHT was observed when the NS
compared with the DS treatment. The shortest plant in the NS
was SCR1 and the tallest was BFS35. Genotypes SCR13 and
BFS67 showed the minimum and maximum plant heights,
respectively, in the DS treatment.

With respect to photosynthesis in the DS treatment, the
highest SCMR (39.7) was measured for SCR5 and the lowest
(15.6) for SCR15. This trait was also highly affected by drought
stress, with a 26.1% reduction from the non-stress treatment.
BFS34 and SCR34 showed the highest and lowest RPR of 11.3
and 25.4, respectively, in the NS treatment. RPF ranged from
9.4 to 29.8 with a mean of 21.1 for the DS treatment, BF54 and
BFS55 showing the highest values and SCR15 the lowest.
pths across three time periods under drought stress and
2015. (a): drought stress; (b): non-stress. FL: flowering stage;

on bean (Phaseolus vulgaris L.) genotypes for drought stress
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Table 1 – Significance of treatment, genotype, and genotype-by-treatment effects for traits evaluated in 64 common bean
genotypes grown under drought-stress and non-stress treatments at Hawassa, November 2014 to March 2015.

Trait Treatment (T)
(df = 1)

Genotype (G)
(df = 63)

G × T
(df = 63)

CV
(%)

Average Maximum Minimum Percent
reduced (%)

DS NS DS NS DS NS

SCMR ⁎⁎ ⁎⁎ ⁎⁎ 11.6 28.3 38.3 39.7 50.2 15.6 26.0 26.1
PLHT ⁎⁎ ⁎⁎ ⁎⁎ 9.7 31.8 37.3 43.8 47.5 24.0 24.8 14.7
DM ⁎⁎ ⁎⁎ ⁎⁎ 2.4 89.0 102.0 99.0 107.0 82.0 95.0 12.7
RPF NS ⁎⁎ ⁎⁎ 19.0 21.1 20.8 29.8 25.4 9.4 11.3 −1.4
PDPL ⁎⁎ ⁎⁎ ⁎⁎ 13.7 32.1 39.7 50.1 55.8 14.4 16.5 19.1
SDPD ⁎ ⁎⁎ ⁎⁎ 7.9 5.0 5.1 6.0 6.6 4.0 4.0 2.0
100 SW ⁎⁎ ⁎⁎ ⁎⁎ 8.6 24.1 27.0 30.0 33.5 15.2 17.2 10.7
YLDH ⁎⁎ ⁎⁎ ⁎ 18.0 2003.5 2855.7 2579.0 3819.0 1083.0 1660.0 29.8

⁎Significant at P ≤ 0.05, ⁎⁎Significant at P ≤ 0.01, Abbreviations: NS, nonsignificant; DM, days to maturity; PLHT, plant height (cm); RPF, vertical
root pulling force resistance; SCMR, leaf chlorophyll content; TRT, treatment; PDPL, number of pods per plant; SDPD, number of seeds per pod;
100 SW, 100 seed weight (g); YLDH, seed yield (kg ha−1).
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Drought stress caused a 1.4% increase in RPF in comparison
with the NS treatment.

Among yield components, highly significant differences
(P ≤ 0.01) between the treatments, genotypes, and genotype-
by-treatment interactions were also observed for the variables
PDPL, SDPD, and 100 SW, all measured at or after harvest.
PDPL ranged from 16.6 to 55.8 with mean of 39.6 for the NS
treatment and from 14.4 to 50.1 with a mean of 32.1 for the
DS treatment. The mean PDPL was 18.9% higher in the NS
than in the DS treatment. Genotypes BFS35 and SCR1 showed
the highest and lowest PDPL, respectively, in the NS treat-
ment, whereas BFS55 and SCR35 showed the highest and
Fig. 3 – Scattergram showing the identification and categorizatio
comparison of drought-stress (DS) and non-stress (NS) growing c
in DS and NS for the check, Hawassa Dume.

Please cite this article as: K. Darkwa, et al., Evaluation of comm
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lowest in the DS treatment. Exposure to drought caused
100 SW to decrease by 10.7% from the NS treatment. SCR18
showed the highest 100 SW and SCR6 the lowest in the NS.
SCR2 and SEC24 showed the highest and lowest 100 SW,
respectively, in the DS treatment.

For YLDH, the mean squares of genotypes, treatments,
and genotype-by-treatment interaction also showed highly
significant differences (P ≤ 0.001). Exposure to drought stress
caused a yield penalty of 29.8% in the DS relative to the
NS treatment. On the basis of seed yield under DS and
NS conditions, the 64 genotypes could be classified into four
differential categories (Fig. 3 and Table S1). In the first
n of common bean genotypes based on their seed yield in a
onditions. Horizontal and vertical lines indicate mean values

on bean (Phaseolus vulgaris L.) genotypes for drought stress
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Table 2 – Drought tolerance indices of 64 common bean genotypes grown under non-stress and drought-stress conditions
at Hawassa, November 2014 to March 2015.

Genotype Drought
susceptibility index

Drought tolerance
index

Mean
productivity

Geometric mean
productivity

Yield stability
index

Yield reduction
rate (%)

SCR1 0.3 0.4 1866 1864 0.9 8.7
SCR2 1.3 0.8 2610 2530 0.6 39.5
SCR3 0.8 0.5 2082 2065 0.8 22.5
SCR4 0.9 0.7 2425 2398 0.7 25.6
SCR5 1.0 0.9 2753 2709 0.7 30.2
SCR6 1.5 0.8 2711 2596 0.6 44.8
SCR7 0.6 0.8 2515 2504 0.8 17.1
SCR8 0.1 0.7 2323 2323 1.0 3.5
SCR9 0.7 1.0 2843 2820 0.8 22.4
SCR10 0.7 0.7 2458 2440 0.8 21.1
SCR11 1.6 0.8 2653 2521 0.5 47.6
SCR12 1.5 0.8 2698 2571 0.5 46.5
SCR13 −0.7 0.6 2162 2152 1.2 −21.0
SCR14 1.7 0.6 2435 2291 0.5 50.6
SCR15 0.8 0.3 1470 1458 0.8 22.9
SCR16 0.5 0.8 2515 2507 0.9 14.6
SCR17 1.0 0.9 2673 2634 0.7 28.8
SCR18 0.6 0.7 2485 2471 0.8 19.4
SCR19 0.7 0.6 2290 2276 0.8 20.0
SCR20 −0.9 0.6 2199 2184 1.3 −27.0
SCR21 0.9 0.5 2108 2082 0.7 26.9
SCR22 1.6 0.6 2370 2256 0.5 46.8
SCR23 0.6 0.8 2621 2608 0.8 18.1
SCR24 0.7 0.8 2639 2622 0.8 20.4
SCR25 1.5 0.7 2432 2321 0.5 46.0
SCR26 1.6 0.5 2035 1924 0.5 49.1
SCR27 1.3 0.5 2150 2091 0.6 37.5
SCR28 1.5 0.7 2513 2407 0.6 44.6
SCR29 1.3 0.5 2053 1991 0.6 39.1
SCR30 1.6 0.8 2638 2499 0.5 48.4
SCR31 2.1 0.5 2219 1974 0.4 62.7
SCR32 1.8 0.7 2656 2463 0.5 54.5
SCR33 1.0 0.9 2835 2810 0.8 23.1
SCR34 0.3 0.3 1613 1523 0.5 49.5
SCR35 0.4 0.4 1830 1773 0.6 39.5
SCR36 0.9 0.9 2785 2754 0.7 25.9
SCR37 1.0 0.8 2861 2807 0.7 32.3
RCB745 0.6 0.4 2323 2189 0.5 50.1
BFS4 1.0 0.8 2851 2804 0.7 30.5
BSF10 0.6 0.7 2188 2171 0.8 21.8
BSF14 0.6 1.6 2230 2214 1.3 −27.0
BSF18 0.5 0.4 2100 2023 0.6 42.3
BSF20 0.5 0.9 1982 1981 0.9 5.6
BSF23 0.7 0.7 2405 2359 0.7 32.5
BSF24 0.5 0.9 2119 2115 0.9 12.1
BSF27 0.8 1.0 2593 2584 0.9 14.9
BSF29 1.0 0.9 2902 2862 0.7 28.3
BSF30 0.5 0.7 2094 2081 0.8 19.9
BSF32 0.6 1.5 2299 2291 1.2 −19.0
BSF33 0.9 0.8 2794 2747 0.7 31.0
BSF34 1.0 0.9 2834 2797 0.7 27.6
BSF35 0.9 0.4 2835 2659 0.5 51.5
BSF39 0.7 1.3 2430 2428 1.1 −6.2
BSF47 0.6 0.4 2303 2181 0.5 48.6
BSF55 0.8 1.3 2600 2599 1.0 1.6
BSF59 0.7 0.7 2502 2458 0.7 31.5
BSF60 0.9 0.6 2754 2651 0.6 42.7
BSF62 0.9 0.7 2713 2644 0.6 36.5
BSF67 0.8 0.9 2600 2585 0.8 19.3
BSF75 0.6 0.6 2210 2177 0.7 29.5
SXB412 0.5 0.3 2324 2102 0.4 59.8
DUME 0.7 0.7 2494 2450 0.7 31.2
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Table 2 (continued)

Genotype Drought
susceptibility index

Drought tolerance
index

Mean
productivity

Geometric mean
productivity

Yield stability
index

Yield reduction
rate (%)

SER16 1.1 0.9 3000 2957 0.7 28.8
SEC24 0.8 1.0 2508 2502 0.9 12.2

DSI, drought susceptibility index; DTI, drought resistance index; MP, mean productivity; GM, geometric mean; YSI, yield stability index; PYR:
% yield reduction from non-stressed.
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category were genotypes with higher yield than the check in
both treatments, namely SCR5, SCR9, SCR17, SCR33, SCR36,
SCR37, SER16, BFS4, BFS29, BkFS33, BFS34, BFS59, and BFS62.
Two of these 13 genotypes, namely BFS29 and SER16, showed
significantly (P ≤ 0.05) superior yield performance relative to
the check under both DS and NS treatments, with the highest
mean productivities of 2902 and 2999.5 kg ha−1, respectively,
versus 2493.5 kg ha−1 for the control variety Hawassa Dume,
with 16.4% and 20.3% yield advantages.

In the second yield category were genotypeswith the lowest
degree of adaptation and yield in the DS and NS treatments,
including SCR1, SCR3, SCR15, SCR21, SCR26, SCR27, SCR29,
SCR34, SCR35, BFS10, BFS18, BFS20, BFS23, BFS24, BFS30, and
BFS75. The third category contained genotypes that showed
high yield (higher than the check) in the DS treatment but low
yields (lower than the check) in the NS treatment, including
SCR4, SCR7, SCR8, SCR10, SCR13, BFS27, SCR16, SCR18, SCR19,
SCR20, BFS14, SCR23, SCR24, BFS32, BFS39, BFS55, BFS67, and
SEC24. Category 4 included genotypes that yielded well in the
NS treatment but showed correspondingly lower yield in the DS
treatment. Thesewere SCR2, SCR6, SCR11, SCR12, SCR14, SCR22,
SCR25, SCR28, SCR30, SCR31, SCR32, RCB745, BFS35, BFS47,
BFS60, and SXB412. In total, 10 genotypes from group 4 had
significantly higher yields than Hawassa Dume in the NS
treatment. These were genotypes BFS35, SCR32, SCR12, SER16,
BFS60, SCR6, SCR11, SCR30, SCR37, and BFS29. The yield
advantage of these genotypes ranged from 29.2% for BFS35
(3819 kg ha−1) to 14.4% for BFS29 (3381 kg ha−1). Finally, nine
genotypes (BFS55, BFS39, SER16, BFS32, BFS14, SCR9, SCR33,
SCR20, and BFS29), gave yields significantly (P ≤ 0.05) higher
than that of the check in theDS. Yield advantages overHawassa
Dume ranged from 27% for BFS55 (2579 kg ha−1) to 19.2% for
BFS29 (2423 kg ha−1).
Table 3 – Simple correlation coefficients between seed yield and
drought-stress (upper diagonal) and non-stress (lower diagonal

Trait SCMR PLHT DM RPF

SCMR −0.0 −0.5 ⁎⁎ 0.5 ⁎⁎

PLHT 0.5 ⁎⁎ −0.0 0.1
DM 0.5 ⁎⁎ 0.6 ⁎⁎ −0.4 ⁎⁎

RPF 0.4 ⁎⁎ 0.4 ⁎⁎ 0. 5 ⁎⁎

PDPL 0.6 ⁎⁎ 0.6 ⁎⁎ 0.6 ⁎⁎ 0.6 ⁎⁎

SDPD 0.6 ⁎⁎ 0.6 ⁎⁎ 0.6 ⁎⁎ 0.5 ⁎⁎

100 SW 0.1 0.2 0.2 ⁎ 0.2 ⁎

YLDH 0.6 ⁎⁎ 0.6 ⁎⁎ 0.5 ⁎⁎ 0.4 ⁎⁎

SCMR, leaf chlorophyll content; PLHT, plant height (cm); DM, days to matu
per plant; SDPD, number of seeds per pod; 100 SW, 100 seed weight (g); Y
⁎⁎ Significant at P ≤ 0.01.
⁎ Significant at P ≤ 0.05.
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3.3. Effect of drought stress on seed yield

The severity of drought stress effects on seed yield over all
of the experiments, expressed as a drought intensity index,
was moderate at 0.3. The drought tolerance indices for
individual genotypes were also estimated (Table 2). Based on
mean productivity and geometric mean productivity, geno-
types SER16, BFS29, SCR37, BFS54, SCR9, and SCR33 were
higher-yielding under the two watering regimes.

In contrast, the genotype rankings by the indices of
drought susceptibility, drought tolerance, and yield stability
and yield reduction rate were different from those by mean
productivity and geometric mean productivity. Accordingly,
genotypes SCR20, BFS14, SCR13, BFS32, BFS39, BFS55, and
SCR8 were considered tolerant to drought stress because of
their low values for drought susceptibility index and yield
reduction rate and high values for drought tolerance index
and yield stability index. However, these genotypes were not
among the highest-yielding lines under the NS condition.
In contrast, genotypes SCR14, BFS47, SCR29, RCB745, BFS18,
SCR35, SCR26, SXB412, SCR15, SCR31, and SCR34 were con-
sidered susceptible to drought stress, although some yielded
well under NS condition.

3.4. Correlation between traits

As shown in Table 3, YLDH was positively correlated
(P ≤ 0.01) with SCRM (r = 0.5), RPF (r = 0.6), PDPL (r = 0.7)
and SDPD (r = 0.6) under DS conditions. However, the sig-
nificant correlation between YLDH and DM was negative
(r = −0.6). DM was also significantly negatively correlated
with RPF, PDPL and SDPD. SCMR showed a positive sig-
nificant correlation with RPF, PDPL, and SDPD. Under the
other traits of 64 common bean genotypes evaluated under
) conditions at Hawassa fromNovember 2014 to March 2015.

PDPL SDPD 100 SW YLDH

0.6 ⁎⁎ 0.6 ⁎⁎ 0.2 0.5 ⁎⁎

0.1 0.1 0.2 ⁎ 0.2 ⁎

−0.7 ⁎⁎ −0.7 ⁎⁎ 0.1 −0.6 ⁎⁎

0.6 ⁎⁎ 0.5 ⁎⁎ 0.1 0.6 ⁎⁎

0.8 ⁎⁎ −0.0 0.7 ⁎⁎

0.7 ⁎⁎ −0.0 0.6 ⁎⁎

0. 1 0.1 0.2
0.8 ⁎⁎ 0.6 ⁎⁎ 0.1

rity; RPF, vertical root pulling force resistance; PDPL, number of pods
LDH, seed yield per hectare (kg ha−1).
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Fig. 4 – Average linkage-based dendrogram showing hierarchical grouping patterns of 64 common bean genotypes in four
clusters based on 14 quantitative traits under drought-stress condition.

Table 4 – Mahalanobis distance between groups of common
bean genotypes.

Cluster II III IV

I 1837.8 ⁎⁎ 901.79 ⁎⁎ 1482.46 ⁎⁎

II 941.11 ⁎⁎ 469.92 ⁎⁎

III 654.153 ⁎⁎

χ2
0.01 = 26.22.

⁎⁎ Significant at P < 0.01.
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NS condition, correlations between YLDH and all the other
traits measured except for 100 SW (SCMR, PLHT, DM, RPF,
PDPL, and SDPD) were positive and highly significant.
Positive, significant correlations were also observed be-
tween SCMR, DM, RPF, PDPL, and SDPD. 100 SW showed
no significant correlation with YLDH under NS and DS
conditions.

3.5. Clustering of genotypes
The average linkage grouping method using the DS

variables identified by PCA produced four clusters of the
64 genotypes (Fig. 4). Cluster III was the largest, containing
35 genotypes (54.69%) followed by cluster I, which contained
23 genotypes (35.94%). Clusters II and IV were small groups
containing four (6.25%) and two genotypes (3.12%), respec-
tively (Table S1). Genotypes with high degrees of yield
adaptation under DS were grouped in cluster I (Fig. 3,
Table S1) and those with low adaptation under DS were
grouped in cluster III. Genotypes SCR 15 and SCR 34 were
grouped in cluster IV. These genotypes showed the least yield
adaptation under both NS and DS conditions. Genotypes
BFS14, BFS32, SCR13 and SCR20 were grouped in cluster II
as genotypes that were not adapted under NS and highly
adapted under DS conditions.

The Mahalanobis distance between clusters is presented
in Table 4. The highest inter-cluster distance appeared be-
tween clusters I and II (D2 = 1837.8) followed by clusters I
and IV (D2 = 1482.5) and clusters II and III (D2 = 941.1). The
lowest inter-cluster distance was found between clusters II
and IV (469.9) followed by that between clusters III and IV
(654.2).
Please cite this article as: K. Darkwa, et al., Evaluation of comm
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4. Discussion

Dry-season weather conditions imposed the main stress in the
experiments in this trial, especially in the non-irrigated treat-
ment. The daily averagemaximumandminimum temperatures
during the season were 30.7 °C and 11.3 °C, respectively. These
temperatures are within the favorable range for common bean
growth [7,28]. However, the total amount of rainfall received
through the growing period was much lower than the
350–500 mm rainfall required by the crop, indicating moderate
to high drought stress. Terminal drought stress, as experienced
in this study, is the most important problem for common bean
production in much of the developing world [29].

In this study, the genotypes were evaluated under moder-
ately high drought stress (corresponding to a drought stress
index of 0.3), which was adequate to reveal genotypic dif-
ferences, as seen by the differential response of the genotypes
for the various traits measured. Ambachew et al. [14] and
Beebe et al. [21] reported that evaluation of genotypes under
on bean (Phaseolus vulgaris L.) genotypes for drought stress
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conditions of extreme drought stress reduces seed yields to
very low levels that could nullify the genotypic differences
among test materials. However, high to moderate stress
is useful for genotypic selection. It is also worth noting
that because insufficient stress could result in selection of
non-resistant genotypes, evaluation of common bean under
high to moderate stress is considered ideal [2,29].

The significant effect of the genotypes, treatments and
the genotype-by-treatment interaction for the various traits
indicated that the expressions of the genotypes across the two
growing moisture regimes was not static and nonresponsive
but rather adaptable. This result is in accord with those of
Asfaw and Blair [2], Porch et al. [30], and Rezene et al. [31], who
reported differential response of common bean varieties to
drought-stressed and non-stressed conditions.

The influence of drought stress on trait expression of
the genotypes varied. Some characters were more sensitive
to drought stress effects than others. Seed yield, days to
maturity, plant height, 100 seed weight, leaf chlorophyll
content, and pods per plant were highly sensitive to drought
stress, whereas seeds per pod and vertical root pulling force
resistance were the least sensitive. This difference could be
attributed to differences between genotypes or to the nature
of the traits. Significant reduction in days to physiological
maturity as a result of drought stress was observed in the
present study and previously [20,21]. Phenotypic plasticity
has been reported in common beans subjected to drought
stress [32] as a mechanism for adaptation. For example,
some common bean genotypes respond to drought stress by
hastening their maturity [7,19]. Earliness to harvest can be
linked to drought escape and, as such, is a mechanism of
drought tolerance [33]. Rao et al. [20] reported drought toler-
ance of early-maturing genotypes, given their lower net water
requirement throughout their plant life cycle compared with
late-maturing genotypes. Rezene et al. [31] and Singh [33]
found that late-maturing genotypes suffer greater reduction
in performance under drought stress than do early ones.

Drought is known to affect plant photosynthesis [32]. The
higher leaf chlorophyll content observed in the non-stressed
treatment in this studywasa result of the availability ofmoisture
in the soil throughout the entire life cycle of the crop, which
favors the vegetative growth and induced the plants to grow
taller and produce more chlorophyll. Chaves et al. [34] reported
that drought stress reduces leaf chlorophyll content. However, a
small chlorophyll increase (4%)has beenobservedunder drought
as well [35]. Drought stress during the mid-pod fill stage can
decrease leaf chlorophyll content, resulting in a progressive
decline in photosynthetic capacity, although in our previous
study [14], genotypes with higher leaf chlorophyll content
produced higher seed yield than those with lower content.

The higher mean performance of genotypes for vertical
root pulling force resistance under drought stress conditions
suggests that common bean responds to drought stress by
increasing root growth. The role of vertical root pulling force
resistance in common beans was first reported by Ambachew
et al. [14] as a proxy root trait for measuring the roots' ability
to obtain water. The higher the resistance to the upward
pulling force, the greater was expected to be the root system
attachment to the soil in which it was growing, suggesting
higher root density and deeper rooting system. The same
Please cite this article as: K. Darkwa, et al., Evaluation of comm
adaptation in Ethiopia, The Crop Journal (2016), http://dx.doi.org/1
study found a significant correlation between vertical root
pulling force resistance and seed yield.

Yield-component traits are generally good indicators of
overall drought stress, and our study showed significant
reductions in number of pods per plant, 100 seed weight,
and seed yield under drought conditions. Similarly, Asfaw
and Blair [2] reported significant reductions in pod number
per plant, seed number per pod, 100 seed weight and seed
yield of common beans under similar drought-stressed con-
ditions. The higher reduction in number of pods per plant
in drought-stress as compared to the non-stress condition,
may have been due to a reduction in flower fertilization under
drought-stress conditions [14].

The reduction in seed yield and 100 seed weight
associated with drought is thought to be caused by a
decrease in photosynthate assimilation and poor carbohy-
drate partitioning to the developing grain because of
drought stress [20,31,35]. The strong association between
photosynthate assimilation and better remobilization of
carbohydrates by drought-tolerant genotypes permits them
to maintain high 100 seed weight irrespective of the
moisture content of the soil [33].

This studyhas implications for plant breeding. Understanding
of the relationships among plant traits under drought-stress
should prompt common bean breeders to make better yield
measurements and record drought-response characteristics in
more detail. Among the yield traits, we found, as also previously
reported [2,14,21,31], a positive significant correlation between
seed yield and pods per plant and seeds per pod under drought
and non-stressed conditions. The success of hybridization in a
breedingprogramdependson the choiceof distant parental lines.
Crosses that involve parents selected from the clusters charac-
terized by maximum genetic distance in this study are expected
to result in maximum genetic recombination and variation in
subsequent generations once the lines are introduced into small
red bean breeding for Ethiopia or other countries.
5. Conclusions

The adaptation of genotypes to drought-stress conditions and
their good performance in a well-watered environment were
associated with leaf chlorophyll content, vertical root pulling
force resistance, number of pod per plant, and number of seeds
per pod. Most of the genotypes showed adaptation to drought
stress by reducing their days to physiological maturity, thereby
minimizing the effect of drought. GenotypesBFS55, BFS39, BFS32,
BFS14, SCR9, SCR33, and SCR20, which yielded well under the
drought-stressed condition,may be good sources of resistance to
this stress. Hybridization between genotypes selected from
clusters I and II will provide the maximum genetic recombina-
tion and variation for drought tolerance.
Acknowledgments

We acknowledge funding to D. Ambachew, A. Asfaw, and
M. W. Blair by the Tropical Legumes project of the Generation
Challenge Program (C-086-13) with support from the Bill and
on bean (Phaseolus vulgaris L.) genotypes for drought stress
0.1016/j.cj.2016.06.007

http://dx.doi.org/10.1016/j.cj.2016.06.007


10 T H E C R O P J O U R N A L X X ( 2 0 1 6 ) X X X – X X X
Melinda Gates Foundation. The Evans Allen Fund is recognized
for funding Matthew W. Blair and Daniel Ambachew at
Tennessee State University. We also thank the South Agricul-
tural Research Institute (SARI) for hosting this research. We
acknowledge CIAT (S. Beebe and B. Raatz) for supplying
germplasm and previous SARI staff for development of
Hawassa Dume.
Supplementary data

Supplementary data for this article can be found online at
http://dx.doi.org/10.1016/j.cj.2016.06.007.
R E F E R E N C E S

[1] W.J. Broughton, G. Hernandez, M.W. Blair, S.E. Beebe, P. Gepts,
J. Vanderleyden, Beans (Phaseolus spp.) model food legumes,
Plant Soil 252 (2003) 55–128.

[2] A. Asfaw, M.W. Blair, Quantification of drought tolerance in
Ethiopian common bean varieties, Agric. Sci. 5 (2014) 124–139.

[3] FAOSTAT, http://faostat3.fao.org/browse/Q/QC/E Accessed
on June 28, 2016.

[4] K. Tumsa, R. Buruchara, S.E. Beebe, Common Bean Strategies
and Seed Roadmaps for Ethiopia, in: E.S. Monyo, G.C.L.
Laxmipathi (Eds.), Grain Legumes Strategies and Seed
Roadmaps for Selected Countries in Sub Saharan Africa and
South Asia, TL-II Project Report, ICRISAT, India 2014, pp. 3–11.

[5] Z. Wondatir, Y. Mekasha, Feed resources availability and
livestock production in the central rift valley of Ethiopia, Int.
J. Livest. Prod. 5 (2014) 30–35.

[6] H. Budak, M. Kantar, K.Y. Kurtoglu, Drought tolerance in
modern and wild wheat, Sci. World J. 10 (2013) 548246.

[7] S.E. Beebe, I.M. Rao, M.W. Blair, J.A. Acosta-Gallegos,
Phenotyping common beans for adaptation to drought, Front.
Physiol. 5 (2013) 123–138.

[8] S.P. Singh, Broadening the genetic base of common bean
cultivars, Crop Sci. 4 (2001) 1659–1675.

[9] P.G. Jones, P.K. Thornton, The potential impacts of climate
change on maize production in Africa and Latin America in
2055, Glob. Environ. Chang. 13 (2003) 51–59.

[10] A. Asfaw, C. Almekinders, M.W. Blair, P. Struik, Participatory
approach in common bean breeding for drought tolerance for
southern Ethiopia, Plant Breed. 131 (2012) 125–134.

[11] D.C. Nielsen, N. Nelson, Black bean sensitivity to water stress
at various growth stages, Crop Sci. 38 (1998) 422–427.

[12] P. Ramirez-Vallejo, J.D. Kelly, Traits related to drought
resistance in common bean, Euphytica 99 (1998) 127–136.

[13] P. Manjeru, T. Madanzi, B. Makeredza, A. Nciizah, M. Sithole,
Effect of Water Stress at Different Growth Stage on
Components and Grain Yield of Common Bean
(Phaseolus vulgaris L.), Afr. Crop Science Conference
Proceedings, Vol. 8, 2007, pp. 299–303.

[14] D. Ambachew, F. Mekbib, A. Asfaw, S.E. Beebe, M.W. Blair,
Trait associations in common bean genotypes grown under
drought stress and field infestation by BSM bean fly, Crop J. 3
(2015) 305–316.

[15] S. Khaghani, M.R. Bihamata, F. Rahim, H.R. Dorry, Study of
qualitative and quantitative traits in red bean in non-stress
and drought condition, Asian J. Plant Sci. 7 (2008) 563–568.

[16] Central Statistical Agency (CSA) of Ethiopia, Agricultural
Sample Survey, Addis Ababa, Ethiopia,
http://www.csa.gov.et 2013 Accessed on January 5, 2016.
Please cite this article as: K. Darkwa, et al., Evaluation of comm
adaptation in Ethiopia, The Crop Journal (2016), http://dx.doi.org/1
[17] IFPRI (International Food Policy Research Institute), Pulses
value chain potential in Ethiopia: constraints and
opportunities for enhancing exports. Pulses diagnostics,
http://www.ethiopiam.agriculture.file.wordpress.com 2010
Accessed on December 20, 2015.

[18] M.W. Blair, C.H. Galeano, E. Tovar, M.C. Muñoz-Torres, A.V.
Castrillón, Development of a Mesoamerican intra-genepool
genetic map for quantitative trait detection in a drought
tolerant × susceptible common bean (Phaseolus vulgaris L.)
cross, Mol. Breed. 29 (2012) 71–88.

[19] H. Terán, S.P. Singh, Comparison of sources and lines
selected for drought resistance in common bean, Crop Sci. 41
(2002) 64–70.

[20] C.G. Muñoz-Perea, R.G. Allen, D.T. Westermann, J.L. Wright,
S.P. Singh, Water use efficiency among dry bean landraces
and cultivars in drought-stressed and non-stressed
environments, Euphytica 155 (2007) 393–402.

[21] S.E. Beebe, I.M. Rao, C. Cajiao, C.M. Grajales, Selection for
drought resistance in common bean also improves yield in
phosphorus limited and favorable environments, Crop Sci. 48
(2008) 582–592.

[22] M.S. Bartlett, Properties of sufficiency and statistical tests,
Proc. R. Soc. London, Ser. A 160 (1937) 268–282.

[23] R.A. Fischer, R. Maurer, Drought resistance in spring wheat
cultivars: I. Grain yield response, Aust. J. Agric. Res. 29 (1978)
897–907.

[24] G.C.J. Fernandez, Effective Selection Criteria for Assessing
Plant Stress Tolerance, in: C.G. Kuo (Ed.), Adaptation of Food
Crops to Temperature and Water-Stress, AVRDC, Shanhua,
Taiwan, China 1992, pp. 257–270.

[25] A.A. Rosielle, J. Hamblin, Theoretical aspects of selection for
yield in stress and non-stress environment, Crop Sci. 21
(1981) 943–945.

[26] M. Bouslama, W.T. Schapaugh, Stress tolerance in soybean: 1.
Evaluation of three screening techniques for heat and
drought tolerance, Crop Sci. 24 (1984) 933–937.

[28] P.C. Mahalanobis, The Generalized Distance in Statistics,
Proceedings of the National Institute of Sciences (Calcutta),
Vol. 2, 1936, pp. 49–55.

[29] I.M. Rao, S. Beebe, J. Polania, J. Ricaurte, C. Cajiao, R. Garcia, M.
Rivera, Can tepary bean be a model for improvement of
drought resistance in common bean? Afr. Crop. Sci. J. 21
(2013) 265–281.

[30] T.G. Porch, V.H. Ramirez, D. Santana, E.W. Harmsen,
Evaluation of common bean for drought tolerance in Juana
Diaz, Puerto Rico, J. Agron. Crop Sci. 195 (2009) 328–334.

[31] Y. Rezene, S. Gebeyehu, H. Zelleke, Genetic variation for
drought resistance in small red seeded common bean
genotypes, Afr. Crop. Sci. J. 19 (2011) 303–312.

[32] S. Gebeyehu, Physiological Response to Drought Stress of
Common Bean (Phaseolus vulgaris L.) Genotypes Differing in
Drought ResistancePhD Dissertation Universidad de
Liebig-Giessen, Giessen, Germany, 2006.

[33] S.P. Singh, Selection for water-stress tolerance in
interracial population of common bean, Crop Sci. 35 (1995)
153–165.

[34] M.M. Chaves, J. Flexas, C. Pinheiro, Photosynthesis under
drought and salt stress: regulation mechanisms from whole
plant to cell, Ann. Bot. 103 (2009) 551–560.

[35] A. Asfaw, M.W. Blair, P. Struick, Multi-environment
quantitative trait locus analyses for photosynthate
acquisition, accumulation and remobilization
traits in a common bean, Genes Genomes Genet. 2 (2012)
579–595.
on bean (Phaseolus vulgaris L.) genotypes for drought stress
0.1016/j.cj.2016.06.007

http://dx.doi.org/10.1016/j.cj.2016.06.007
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0005
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0005
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0005
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0010
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0010
http://faostat3.fao.org/browse/Q/QC/E
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0020
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0020
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0020
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0020
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0020
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0025
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0025
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0025
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0030
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0030
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0035
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0035
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0035
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0040
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0040
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0045
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0045
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0045
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0050
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0050
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0050
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0055
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0055
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0060
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0060
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0065
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0065
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0065
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0065
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0065
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0070
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0070
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0070
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0070
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0075
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0075
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0075
http://www.csa.gov.et
http://www.ethiopiam.agriculture.file.wordpress.com
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0090
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0090
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0090
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0090
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0090
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0095
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0095
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0095
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0100
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0100
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0100
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0100
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0105
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0105
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0105
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0105
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf9000
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf9000
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0110
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0110
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0110
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0115
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0115
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0115
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0115
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0120
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0120
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0120
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0125
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0125
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0125
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0135
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0135
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0135
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0140
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0140
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0140
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0140
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0145
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0145
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0145
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0150
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0150
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0150
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0155
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0155
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0155
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0155
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0160
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0160
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0160
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0165
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0165
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0165
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0170
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0170
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0170
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0170
http://refhub.elsevier.com/S2214-5141(16)30061-7/rf0170
http://dx.doi.org/10.1016/j.cj.2016.06.007

	Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia
	1. Introduction
	2. Materials and methods
	2.1. Experimental design and trial management
	2.2. Plant trait measurements
	2.3. Statistical analysis

	3. Results
	3.1. Weather and soil moisture
	3.2. Yield-related traits
	3.3. Effect of drought stress on seed yield
	3.4. Correlation between traits
	3.5. Clustering of genotypes

	4. Discussion
	5. Conclusions
	Acknowledgments
	Supplementary data
	References


