Skip to main content

Advertisement

Log in

Extractable soil nutrient effects on feed quality traits of crop residues in the semiarid rainfed mixed crop–livestock farming systems of Southern India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In the mixed crop–livestock systems, while general relation among feed quality, productivity and soil nutrient management have been reported, information on the effects of extractable soil nutrients on crop residue (CR) feed quality traits is scarce (e.g. in semiarid regions of Karnataka, India). In view of the increasingly important role of CR as feed components, in these farming systems, generating such information is a relevant research issue for sustainable development. Here, we report the occurrence and strength of relationships among extractable nutrients in soils and CR feed quality traits, and the effects of improved nutrients input on feed availability and feed quality of CR. Soil samples were collected from farmers’ fields in the semiarid zone of Karnataka and analyzed for available phosphorus (P), potassium (K), sulphur (S), zinc (Zn) and boron (B) using standard laboratory methods. Soil test results were clustered as low, medium or high based on the level of nutrient concentration. Four major farming systems involving nine crops and 419 farms were selected for on-farm trials. Under every sample farm, a plot with farmer’s practice (control) and improved fertilizer inputs (combined application of nutrients found deficient by soil testing) were laid. Performance of crops was recorded. Samples were collected for CR feed quality trait analysis using Near Infrared Reflectance Spectroscopy. The result showed that for cereal and oil crops, extractable soil S was significantly negatively associated with anti-feed quality traits such as neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) (P < 0.01), but significantly positively related to metabolizable energy (ME) and in vitro digestibility (P < 0.01). Extractable B and K levels were associated positively and significantly with NDF, ADF and ADL for oil crops and cereals. Crop level associations, for most crops, showed similar trend. Improved fertilizer inputs affected CR yield much more than it did the quality. It increased ME productivity (ME ha−1) and thereof the potential milk yield ha−1 by as high as 40 % over the control. Therefore, balanced nutrient inputs on crop land positively impact productivity of the livestock compartment of mixed crop–livestock farming system, and this knowledge can build on the currently perceived need and benefits of balanced nutrient replenishment in crop–livestock system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Taluk or block is the second lowest administrative unit in India.

  2. One SLU is equivalent to 350 kg animal live weight.

  3. Typical mixed herd structure means herd structure of different age, production level and species composition. Estimate was based on 2007 livestock census for India (MoAGI 2010) at district level.

  4. Zone consists of as many as 10 Districts.

References

  • Ahmad, M. R., Allen, V. G., Fontenot, J. P., & Hawkins, G. W. (1995). Effect of sulfur fertilization on chemical composition, ensiling characteristics and utilization by lambs of sorghum silage. Journal of Animal Science, 73, 1803–1810.

    CAS  Google Scholar 

  • Bidinger, F. R., & Blümmel, M. (2007). Effects of ruminant nutritional quality of pearl millet [Pennisetum glaucum (L) R. Br.] stover. 1. Effects of management alternatives on stover quality and productivity. Fields Crops Research, 103(2), 129–138.

    Article  Google Scholar 

  • Blümmel, M., Bidinger, F. R., & Hash, C. T. (2007). Management and cultivar effect on ruminant nutritional quality of pearl millet [Pennisetum glaucum (L) R. Br.] stover. Effects of cultivar choice on stover quality and productivity. Fields Crops Research, 103(2), 119–128.

    Article  Google Scholar 

  • Blümmel, M., Anandan, S., & Prasad, C. S. (2009a). Potential and limitations of by-product based feeding systems to mitigate green house gases for improved livestock productivity, pp. 68–74. In N. K. S. Gowda, S. Senani, R. Bhatta, & D. T. Pal (Eds.) Diversification of anima nutrition research in the changing scenario, volume 1 (lead papers). 13th Biennial conference of animal nutrition society of India, 17–19 December 2009, Bangalore, India, p. 168.

  • Blümmel, M., Samad, M., Singh, O. P., & Amede, T. (2009b). Opportunities and limitations of food–feed crops for livestock feeding and implications for livestock–water productivity. Rangeland Journal, 31, 207–213.

    Article  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2002). The nature and properties of soils. New Jersey: Prentice-Hall.

    Google Scholar 

  • Cakmak, I., Marshner, H., & Bangerth, F. (1989). Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). Journal of Experimental Botany, 40, 405–412.

    Article  CAS  Google Scholar 

  • Gowda, N. K. S., Ramana, J. V., Parasad, S. C., & Sing, K. (2004). Micro nutrient content of some tropical conventional and unconventional feed resources of Southern India. Tropical Animal Health and Production, 36, 77–94

    Google Scholar 

  • Haileslassie, A., Blümmel, M., Murthy, M. V. R., Samad, M., Clement, F., Anandan, S., et al. (2011a). Assessment of livestock feed and water nexus across mixed crop livestock system’s intensification gradient: An example from the Indo-Ganaga Basin. Experimental Agriculture, 47, 113–132.

    Article  Google Scholar 

  • Haileslassie, A., Blümmel, M., Clement, F., Ishaq, S., & Khan, M. A. (2011b). Adapting livestock water productivity to climate change. International Journal of Climate Change Strategies and Management, 3, 156–169.

    Article  Google Scholar 

  • Jarrell, W. M., & Beverly, R. B. (1981). The dilution effect in plant nutrition studies. In N. C. Brady (Ed.), Advance in agronomy (Vol. 34). New York: Academic press.

  • Jemal, A., Moon, Y. S., & Abdin, M. Z. (2010). Sulfur a general over view and interactions with Nitrogen. Australian Journal of Crop Science, 4, 523–529.

    Google Scholar 

  • Kern, R. (1996). Boron. In D. L. Sparks et al. (Eds.), Methods for soil analysis, part 3: chemical methods. Book series no. 5. Madison, WI: ASA and SSA.

  • Mathew, B. W., Sollenberger, L. E., & Staples, C. R. (1994). Sulfur fertilization of bermuda grass and effects on digestion of nitrogen, sulfur and fiber by non-lactating cows. Jornal of Hawaiian Pacific Agriculture, 5, 21–30.

    Google Scholar 

  • McDonald, P., Edwards, R. A., & Greenhalgh, J. F. D. (1988). Animal nutrition (4th ed.). New York: Longman scientific and technical.

    Google Scholar 

  • Ministry of Agriculture Government of India (MoAGI). (2010). 18th livestock census 2007. Department of animal husbandry dairying and fishery, Delhi, India.

  • Ministry of Water Resources, Government of Karnataka, Central Ground Water Board (CGWB). (2008). Ground water information booklet. Banglore: South Western Region.

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In D. L. Sparks et al. (Eds.), Methods of soil analysis, part 3: Chemical methods. Madison, WI: ASA and SSA.

  • Olsen, S. R., & Sommer, L. E. (1982). Phosphorus. In A. L. Page et al. ( Eds.), Methods of soil analysis, part 2, Agro. Mong 9, (2nd ed.). Madison, WI: ASA and SSA.

  • Parthasarathy Rao, P., & Hall, A. J. (2003). Importance of crop residues in crop—livestock systems in India and farmers perceptions of fodder quality in coarse cereals. Field Crops Research, 84, 189–198.

    Article  Google Scholar 

  • Pholsen, K., & Suksri, A. (2007). Effects of phosphorus and potassium on growth, yield and fodder quality of IS23585 forage sorghum cultivars (Sorghum bicolor L. Moench). Pakistan Journal of Biological Science, 10, 1604–1610.

    Article  CAS  Google Scholar 

  • Priess, J. A., Haileselassie, A., & Heistermann, M. (2005). Nutrient cycle. In H. Geist (Ed.), Our earth’s changing land: An encyclopedia of land use and land cover change (Vol. 2, pp. 446–450). Westport: Greenwood Press Group.

    Google Scholar 

  • Purushothaman, S., & Kashyap, S. (2010). Trends in land use and crop acreages in Karnataka and their repercussions. Karnataka Journal of Agricultural Sciences, 23, 330–333.

    Google Scholar 

  • Rajashekhara Rao, B. K., Sahrawat, K. L., Wani, S. P., & Pardhasaradhy, G. (2010). Integrated nutrient management to enhance on farm productivity of rainfed maize in India. International Journal of Soil Science, 5, 216–225.

    Article  Google Scholar 

  • Ramachandra, K. S., Taneja, V. K., Sampath, K. T., Anandan, S., & Angadi, U. B. (2000). Livestock feed resources in different agroecosystems of India: Availability requirement and their management (p. 100). Bangalore, India: National Institute of Animal Nutrition and Physiology.

    Google Scholar 

  • Ramachandra, T. V., Kamakshi, G., & Scruthi, B. V. (2004). Bio-resources status in Karnataka. Renewable and sustainable energy review, 8, 1–47.

    Article  Google Scholar 

  • Reed, J. D., Capper, B. S., & Neate, P. J. H. (1988). Plant breeding and nutritive value of crop residues. In Proceeding of a workshop held at ILCA, Addis Ababa, Ethiopia, 1987. Addis Ababa: ILCA.

  • Rees, M. C., & Minson, D. J. (1978). Fertilizer sulfur as a factor affecting voluntary intake, digestibility and retention time of pangola grass (Digitarai decumbens) by sheep. The British Journal of Nutrition, 39, 5–11.

    Article  CAS  Google Scholar 

  • Rego, T. J., Sahrawat, K. L., Wani, S. P., & Pardhasaradhi, G. (2007). Widespread deficiency of sulfur, boron and zinc in India semiarid tropical soils: On farm crop responses. Journal of Plant Nutrition, 30, 1569–1583.

    Article  CAS  Google Scholar 

  • Rockström, J., & Barron, J. (2007). Water productivity in rainfed systems: Overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrigation Science, 25, 299–311.

    Article  Google Scholar 

  • Sahrawat, K. L., Ravi Kumar, G., & Murthy, K. V. S. (2002). Sulfuric acid selenium digestion for multi-element analysis in a single plant digest. Communication in soil science and plant analysis, 33, 3757–3765.

    Article  CAS  Google Scholar 

  • Sahrawat, K. L., Bhattacharyya, T., Wani, S. P., Ray, S. K., Pal, D. K., & Padmaja, K. V. (2005). Long-term lowland rice and arable cropping effects on carbon and nitrogen status of some semiarid tropical soils. Current Science, 89, 2159–2163.

    CAS  Google Scholar 

  • Sahrawat, K. L., Wani, S. P., Rego, T. J., Pardhasaradhi, G., & Murthy, K. V. S. (2007). Widespread deficiencies of sulphur, boron and zinc in dryland soils of the Indian semiarid tropics. Current Science, 93, 1–6.

    Google Scholar 

  • Sahrawat, K. L., Rego, T. J., Wani, S. P., & Pardhasaradhi, G. (2008). Stretching soil sampling to watershed: evaluation of soil test parameters in semi arid tropical watersheds. Communication in soil science and plant analysis, 39, 2950–2960.

    Article  CAS  Google Scholar 

  • Sahrawat, K. L., Wani, S. P., Pardhasaradhi, G., & Murthy, K. V. S. (2010). Diagnosis of secondary and micronutrient deficiencies and their management in rainfed agroecosystem: case study from Indian semiarid tropics. Communications in Soil Science and Plant Analysis, 41, 346–360.

    Article  CAS  Google Scholar 

  • Sahrawat, K. L, Wani, S. P, Subba Rao, A., & Pardhasaradhi, G. (2011). Management of emerging multinutrient deficiencies: A prerequisite for sustainable enhancement of rainfed agricultural productivity. In P. Wani, J. Rockstrom and KL Sahrawat (Ed.), Integrated watershed management in rainfed agriculture suhas.The Netherlands: CRC Press, pp. 281–313.

  • Schmidt, A., Heider, B., & Schultze, R. K. (2000). Preliminary studies on the influences of Boron on forage quality of pasture legumes Desmondium ovalifolium. Revista de la Facultad de Agronomía, 17, 288–294.

    Google Scholar 

  • Singh, S., & Shukla, G. P. (2010). Genetic diversity in the nutritive value of dual purpose sorghum hybrids. Animal nutrition and feed technology, 10S, 93–100.

    Google Scholar 

  • Singh, H. P., Venkateswarlu, B., Vittal, K. P. R., & Ramachandran, K. (2000). Natural resources management for agricultural production in India. In Proceeding of the international conference on managing natural resources for sustainable agricultural production in the 21st century, February 14–18, New Delhi, India, p. 669.

  • Singh, P., Wani, S. P., Pathak, P., Sahrawat, K. L., & Singh, A. K. (2011). Increasing crop productivity and water use efficiency in rainfed agriculture. In Suhas, P. Wani, J. Rockstrom, & K. L. Sahrawat (Ed.), Integrated watershed management in rainfed agriculture. The Netherlands: CRC Press, pp. 315–347.

  • Steinfeld, H., Gerbe, P., Wassenaar, T., Castel, V., Rosales, M., & De Kann, C. (2006). Livestock’s long shadows: Environmental issues and options. Rome: FAO.

    Google Scholar 

  • Zehirov, G., & Georgiev, G. (2005). Effects of boron starvation on lignin content and mineral composition of N2 fixing soybean plants (Glycine Max L. Merr). In Proceedings of the Balkan scientific conference of biology in Plovdiv (Bulgaria), May 19–21, 2005, pp. 373–380.

Download references

Acknowledgments

The authors are grateful to Reddy Ramakrishna, Ravi Devulapalli, Prasad KVSV, and Mohammed Irshad Ahmad for their invaluable support in data generation. We are grateful to two anonymous reviewers for their constructive and through review of the draft version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amare Haileslassie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haileslassie, A., Blümmel, M., Wani, S.P. et al. Extractable soil nutrient effects on feed quality traits of crop residues in the semiarid rainfed mixed crop–livestock farming systems of Southern India. Environ Dev Sustain 15, 723–741 (2013). https://doi.org/10.1007/s10668-012-9403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-012-9403-3

Keywords

Navigation