Skip to main content

Advertisement

Log in

SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp vulgare)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Wild barley (Hordeum vulgare ssp. spontaneum) and landraces are important sources of resistance to biotic and abiotic stresses since they possess wide genetic diversity that may be missing in current elite varieties. In this study, we evaluated a set of 57 barley introgression lines divided in groups depending on the expected levels of introgression (50, 25, and 12.5 %) from one Hordeum spontaneum accessions (Hsp 41-1) and on those (50 and 25 %) from a second (Hsp 41-5); in both cases the 25 % level was represented by two groups depending on the other parent. The two H. spontaneum accessions have been used as the best sources of drought tolerance in the ICARDA barley-breeding program. Graphical genotyping and genetic diversity analysis were used to examine the relative contribution of H. spontaneum and the extent of genetic differences among the 57 lines using 74 microsatellite markers that cover 941 cM of the barley genome. The average proportion of the genome containing H. spontaneum alleles in each group was of 44.5 %, group 1; 24.6 %, group 2; 21.6 %, group 3; 45.4 %, group 4; 19 %, group 5; 15.5 %, group 6 and 11.4 %, group 7. Introgression lines in group 1 and 4, with the highest observed introgression with Hsp 41-1 and Hsp 41-5, showed higher grain yield and better agronomic performance under field conditions in Breda and Khanaser, i.e., the two most stressed environments in which the groups were phenotyped, indicating the usefulness of using H. spontaneum as a source of chromosomal linkage blocks important for improved drought tolerance. However, more extensive genome coverage will be needed to identify the specific chromosomal regions associated with superior performance under extreme drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bassam BJ, Caetano-Analle’s G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S, Grando S (1987) Diversity for morphological and agronomic characters in Hordeum vulgare ssp. spontaneum C. Koch. Genet Agr 41:131–142

    Google Scholar 

  • Ceccarelli S, Grando S, van Leur JAG (1995) Understanding landraces: the Fertile Crescent’s barley provides lesson to plant breeders. Diversity II:112–113

    Google Scholar 

  • Eglinton JK, Evans DE, Brown AHD, Langridge P, McDonald G, Jefferies SP, Barr AR (1999) The use of wild barley (Hordeum vulgare ssp. spontaneum) in breeding for quality and adaptation. 9th Australian barley technical symposium, Melbourne

  • Ellis RP, Forster BP, Waugh R, Bonar N, Handley LL, Robinson D, Gordon DC, Powell W (1997) Mapping physiological traits in barley. New Phytol 137:149–157

    Article  CAS  Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Salem MB (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Ellis RP, Moir J, Talame V, Sanguinet MC, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy S, Bahri H, Ouahabi ME, Zoumarou-Wallis N, El-Fellah M, Salem MB (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168

    Article  Google Scholar 

  • Grando S, von Bothmer R, Ceccarelli S (2001) Genetic diversity of barley: use of local adapted germplasm to enhance yield and yield stability of barley in dry areas. In: Cooper HD, Hodgkin T, Spillane C (eds) Broadening the genetic base of crop production. CABI/FAO/IPRI, New York/Rome, pp 351–372

    Chapter  Google Scholar 

  • Hayano-Saito Y, Tsuji T, Fujii K, Saito K, Iwasaki M, Saito A (1998) Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analyses with molecular markers. Theor Appl Genet 96:1044–1049

    Article  CAS  Google Scholar 

  • Hori K, Sato K, Nankaku N, Takeda K (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Mol Breeding 16:295–311

    Article  CAS  Google Scholar 

  • Ivandic V, Hackett CA, Zhang ZJ, Staub JE, Nevo E, Thomas WTB, Forster BP (2000) Phenotypic responses of wild barley to experimentally imposed water stress. J Exp Bot 51:2021–2029

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Pietrzak LN (1988) Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity. Genetics 119:981–990

    PubMed  CAS  Google Scholar 

  • Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185

    Article  CAS  Google Scholar 

  • Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S (2011) The potential contribution of wild barley (Hordeum vulgare spp spontaneum) germplasm to drought resistance of cultivated barley (Hordeum vulgare spp vulgare). Field Crops Res 120:161–168

    Article  Google Scholar 

  • Liu ZW, Biyashev RM, Saghai-Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876

    Article  CAS  Google Scholar 

  • Macaulay M, Ramsay L, Powell W, Waugh R (2001) A representative, highly informative ‘genotyping set’ of barley SSRs. Theor Appl Genet 102:801–809

    Article  CAS  Google Scholar 

  • Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite mapping and applications of SSLP’s in rice genetics and breeding. Plant Mol Biol 35:89

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry PR (ed) Barley, genetics, biochemistry, molecular biology and biotechnology. CAB international, Oxford, pp 19–43

    Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Semagn K, Ndjiondjop N, Lorieux M, Cissoko M, Jones M, McCouch S (2007) Molecular profiling of an interspecific rice population derived from a cross between WAB 56–104 (Oryza sativa) and CG 14 (Oryza glaberrima). Afr J Biotechnol 6(17):2014–2022

    CAS  Google Scholar 

  • Shakhatreh Y, Haddad N, Alrababah M, Grando S, Ceccarelli S (2010) Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genet Resour Crop Evol 57:131–146

    Article  Google Scholar 

  • Teulat B, Rekika D, Nachit MM, Monneveux P (1997) Comparative osmotic adjustments in barley and tetraploid wheats. Plant Breeding 116:519–523

    Article  CAS  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Article  CAS  Google Scholar 

  • Van Berloo R (2007) GGT: user manual Version 2.0. Wageningen (The Netherlands): Wegeningen University. Available from http://www.plantbreeding.wur.nl/Software/ggt/ggt2_manual.pdf. Accessed 2 May 2010

  • Van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breeding 187:187–195

    Article  Google Scholar 

  • Varshney RK, Paulo MJ, Grando S, van Eeuwijk FA, Keizer LCP, Guo P, Ceccarelli S, Killian A, Baum M, Graner A (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res 126:171–180

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (H. vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • Yan W (2001) GGEbiplot—a Windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron J 93:1111–1118

    Article  Google Scholar 

  • Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of B. Lakew who received a fellowship from Molecular Plant Breeding CRC, Australia to carry out his PhD work between Southern Cross University and ICARDA, Syria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ceccarelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakew, B., Henry, R.J., Eglinton, J. et al. SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp vulgare). Euphytica 191, 231–243 (2013). https://doi.org/10.1007/s10681-012-0795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0795-9

Keywords

Navigation