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Abstract

Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest
change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need
more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of
Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not
capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those
maps vary substantially, ranging from 1.736106 km2 (GlobCover) to 2.696106 km2 (MCD12Q1) in 2009; and their
uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the
Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS)
became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of
Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced
Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy
(producer’s accuracy 86% and user’s accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly
correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the
pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to
quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical
forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from
deforestation and forest degradation (REDD+) implementation, and biodiversity.
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Introduction

Dramatic changes in forests, especially tropical forests, have

significant impacts on regional climate, water and carbon cycles as

well as biodiversity [1,2]. Southeast Asia consists of 11 countries

(Cambodia, Laos, Myanmar, Thailand, Vietnam, Malaysia,

Brunei, Indonesia, Philippines, Singapore, and East Timor) and

its population increased rapidly from approximately 359 million in

1980 to 593 million in 2010 [3]. To meet the rising demand for

food, fiber, water, and housing, substantial land use and land cover

changes, especially deforestation, have taken place in the region.

As the third largest area of tropical rainforests in the world

following the Amazon and Congo Basin [4,5], Southeast Asia

experienced more dramatic deforestation than any other continent

in annual rate in the 1990s [6]. This region was also a hotspot of

forest cover change from 2000 to 2010, e.g., Margono et al. [7].

For example, Indonesia and Myanmar were listed among the top

ten countries with the largest annual net loss of forests while

Vietnam had a large annual net gain of forest area from 2000 to

2010 [8]. National forestry policies differ between these countries,

which further contributes to different forest change patterns and

asymmetric forest transitions affected by the wood product trades

among them [9]. Although government and scientists have made

efforts to reinforce forest protection in Southeast Asia, forest

conversion to plantations (e.g. oil palm) has continued to increase,

which leads to fragmentation and affects biodiversity and carbon

sequestration in peatlands [10–12]. To support regional sustain-

able development, including forest management, carbon emission

estimation, habitat planning, and biodiversity conservation, it is
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critical that accurate and updated information on forest area,

extent, fragmentation and change is developed [13,14].

Several efforts have been carried out to map forest extent and

change in Southeast Asia using optical remotely sensed data from

the Advanced Very High Resolution Radiometer (AVHRR) [15–

17], SPOT-Vegetation [4,18], Moderate Resolution Imaging

Spectroradiometer (MODIS) [14,19,20], and Medium Resolution

Image Spectrometer (MERIS) [21]. However, the area estimates

of forest cover in Southeast Asia from the above-mentioned studies

differ substantially [4,15–18,22]. For example, the MODIS-based

land cover product (MCD12Q1) estimated a forest area of

2.696106 km2 in Southeast Asia in 2009, the MERIS-based

GlobCover land cover product estimated a forest area of

1.736106 km2 in 2009, and the FAO Forest Resources Assessment

(FRA) 2010 reported a forest area of 2.146106 km2. All these

three data products are widely used today for forest resource

survey, climate simulation and biodiversity conservation [23]. The

large discrepancy among these forest maps may be attributed to (1)

fragmented forests or mixed pixels at moderate spatial resolutions

(several hundreds of meters to 1-km), (2) frequent cloud cover [23–

25], and (3) individual definitions and algorithms for forests.

Although Landsat TM/ETM+ imagery (30-m spatial resolution) is

available and has been widely used to map forests [14,19,22,26],

frequent cloud cover in the humid tropical zone makes it difficult

to obtain cloud-free Landsat images over the entirety of Southeast

Asia during a certain period. Consequently, the sample-based

approach was used to select cloud-free Landsat images and map

forest cover change [6,14,27–29]. This sampling approach does

provide statistically-inferred information on forest cover change at

national and continental scales, but forest management and

decision-making for forest resource planning and biodiversity

conservation requires location-specific, detailed, and updated

annual maps of forests. Therefore, annual continental-scale forest

maps of Southeast Asia at higher spatial resolutions (,100 m) are

critical and urgently needed.

Synthetic aperture radar (SAR) with fine spatial resolution

provides cloud-free imagery and is an alternate source for tropical

forest mapping [30–32]. A long radar wavelength (e.g. L-band

SAR) has an improved capability to delineate high-biomass forest

than shorter wavelengths (e.g., C-band SAR) because of its greater

penetration capability through the tree canopy [33]. Early in the

1990s, a single HH polarization dataset from the Japanese Earth

Resources Satellite (JERS-1) was used for forest mapping (e.g.

clear-cut) [34,35]; however, continental forest maps based on

JERS-1 imagery have not yet been developed. The Phased Array

Type L-band Synthetic Aperture Radar (PALSAR), onboard the

Advanced Land Observing Satellite (ALOS) launched by the

Japan Aerospace Exploration Agency (JAXA) in January of 2006,

provides an enhanced capacity for forest mapping and deforesta-

tion detection [31–33,36–43]. JAXA has generated the first 10-m

global forest/non-forest map by using ALOS/PALSAR data

[44,45], and the Woods Hole Research Center in Massachusetts,

USA, is developing a pan-tropical forest cover map for subsequent

deforestation and forest degradation monitoring by using ALOS/

PALSAR data [46]. However, both of these are still unavailable to

the public at this time.

The objective of this study was twofold: (1) to generate a map of

tropical forest cover in Southeast Asia in 2009 at 50-m spatial

resolution; and (2) to evaluate the fragmentation of forests in the

region, based on the new and improved forest cover map. The

forest map was generated by using the publicly available ALOS/

PALSAR 50-m orthorectified mosaic imagery and the decision

tree method reported in a previous study [47]. We evaluated the

resultant map with validation sample data derived from the

ground truth field photos at the Global Geo-referenced Field

Photo Library (http://www.eomf.ou.edu/photos) and Google

Earth. It was also compared to two regional/global land cover

maps and to the FAO FRA 2010 statistics to supplement the

validation. Based on this first continental-scale forest map at 50-m

spatial resolution in Southeast Asia, forest fragmentation was

investigated by using the fragmentation model presented by

Riitters et al. [48,49]. We aimed to better understand the

fragmentation of forests in the region, which may help improve

habitat planning and biodiversity conservation.

Data and Methods

PALSAR 50-m Orthorectified Mosaic Product and pre-
processing

As part of the ALOS Kyoto and Carbon Initiative Project,

JAXA released the PALSAR 50-m Orthorectified Mosaic Imagery

Product in 2007, 2008, and 2009 for many parts of the world,

including Southeast Asia. In this study we used the PALSAR 50-m

Orthorectified Mosaic Product derived from images collected from

June to October in 2009, and it has HH (horizontally transmitted

and horizontally received) and HV (horizontally transmitted and

vertically received) polarizations. The datasets are freely available

to the public at the ALOS Kyoto and Carbon Initiative official

website (http://www.eorc.jaxa.jp/ALOS/en/). The original PAL-

SAR data with the observational mode of Fine Beam Dual (FBD)

polarization has an off-nadir angle of 34.3 degrees, a range

resolution of 14–88 m, and they have been geometrically rectified

and mosaicked [50–52]. The Digital Number (DN) values

(amplitude values) of these images were converted into the

normalized radar cross section in decibel (s0, with the unit of

dB) according to the following formula [36],

s0(dB)~10| log10 DN2zCF ð1Þ

where DN is the original digital number value in HH or HV

polarization, and CF is the absolute calibration factor and equal to

283.

We generated two additional images from HH and HV images:

(1) the band ratio (HH/HV) image and (2) the band difference

(HH–HV) image. Both the difference image and band ratio image

have proven valuable for land cover classification [53,54] as they

provide additional information of different land cover types. For

example, the difference image was used to separate palm

plantations and other trees [10]. The false color composite map

(Fig. 1) shows the separability capability of the PALSAR image in

four main land cover types.

Ground-based Points of Interest (POIs) data
Geo-referenced field photos available at the Global Geo-

Referenced Field Photo Library (see http://www.eomf.ou.edu/

photos/, available to the public) at the University of Oklahoma

(Xiao et al., 2011) were used as ground-based points of interest

(POIs) data. The field photos and associated land cover

information were provided by citizen scientists and researchers

and archived at the Field Photo Library. We acquired the field

photos only at unrestricted locations where no special permission

was required and avoided the national park and other protected

areas of land or sea related to wildlife. We confirm that our field

studies did not involve endangered or protected species or provide

specific location information for such.

Researchers usually take photos to document their study sites

and landscapes by using (a) GPS cameras, (b) smartphones, or (c)

A 50-m Forest Map in Continental Southeast Asia
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digital cameras plus handheld GPS receivers. The Field Photo

Library is a community remote sensing and citizen science data

portal for archiving, sharing, and exchanging these geo-tagged

field photos and associated thematic databases of land cover types

from the individual photos [55]. It hosts field photos contributed

by our research team and other researchers around the world.

Many field photos were interpreted and labeled by photo

providers with the land cover types they represent, which results

in a thematic database of land cover types, associated with the field

photos. The geo-referenced field photos can be downloaded in

different formats, compatible with Google Earth (kml or kmz),

ArcGIS (shapefile), and attribute database software (attribute

tables). The data portal also provides a MODIS data extraction

function that allows people to retrieve time series MODIS data

(e.g., surface reflectance, vegetation indices) for individual pixels

with geo-referenced field photos (Fig. 2a), which enables rapid

analysis of phenology at individual POIs. With the contributions

from citizen scientists and other researchers, the Field Photo

Library now hosts over 30, 000 photos for Southeast Asia.

In this study, we first selected field photos that we collected

during our field trips in Thailand, Vietnam and Indonesia; ,7,000

geo-referenced field photos were collected in the past few years.

Casio EX-H20 GBK Hybrid-GPS digital cameras were used in

field trips to acquire GPS-referenced photos. All participants in the

field trips used a standard protocol for taking photos in the field.

For photos that describe high quality study sites, one takes photos

from the center of the area of interest (one photo looking down

and one photo looking up) and photos in each of four directions

(N, E, W, and S) for a general description of the landscape, which

results in a minimum 6 photos per site. For photos that describe

only landscapes, photos were taken often from one or two

directions (see the Field Photo Library website for detailed

description of the field photo protocol). For the countries with

limited field photos (Myanmar, Cambodia, Malaysia, and

Philippines), ,500 landscape photos with GPS information were

collected from the Degree Confluence Project (confluence.org) and

the Panoramio (www.panoramio.com). Together, a comprehen-

sive coverage of geo-referenced field photos was achieved in all the

countries except for Brunei, East Timor, and Singapore (Fig. 2a).

Regions of Interest (ROIs) for algorithm training and
product validation

We combined the geo-referenced field photos (POIs) and high-

resolution images in Google Earth to generate homogeneous land

cover polygons (polygon sampling units). The procedure is

composed of two steps: (1) overlay geo-referenced field photos

with high-resolution images in Google Earth; and (2) digitize high-

resolution images in Google Earth to generate polygons. Previous

studies have shown that Google Earth is feasible for ROI

digitization of land cover classifications [56–59]. Our previous

studies also showed that integrating the Field Photo Library and

Google Earth is reliable [47,60]. During the digitalization process,

the minimum size of a polygon is required to be at least 3 times

larger than the minimum land size used in the forest cover

definition. For example, FAO provides a classic forest definition

with three components: 1) tree canopy cover .10%, 2) tree height

.5 m, and 3) minimum land size 0.5 ha [61]. We used this FAO

definition of forest cover and ensured that each polygon has a size

of at least 3 times larger than 0.5 ha and tree canopy cover .10%.

The resultant polygon sample units, called the regions of interest

(ROIs), were then used for both algorithm training and product

validation, respectively. A total of 78 ROIs for four land cover

types (forest, cropland, water body, and built-up land) were

generated as the algorithm training ROIs (Fig. 2b), and they were

the same as those used in our previous study in mainland

Southeast Asia [47], including 25 forest ROIs (997 986 pixels), 32

cropland ROIs (160 916 pixels), 10 water ROIs (303 948 pixels),

and 11 built-up land ROIs (26 970 pixels). As the PALSAR L-

band backscatter reflects more about physical characteristics, we

assume the same algorithm will work in the insular Southeast Asia

as well. The initial aim of this study is to verify whether the

algorithm developed in the Mainland Southeast Asia [47] is

suitable in insular Southeast Asia.

We also developed a second set of ROIs for validation of the

results in this study (Fig. 2b). A total of 1,233 ROIs (11.26105

pixels) were collected, including 422 forest ROIs (458 488 pixels),

599 cropland ROIs (129 655 pixels), 70 water ROIs (445 538

pixels), and 142 other land cover ROIs (mainly built-up land, 88

019 pixels). The mean size of forest ROIs was bigger than those of

cropland and built-up land, as the cropland and built-up

landscapes are fragmented in Southeast Asia.

Land cover classification based on PALSAR data and
decision tree algorithm

Signature analyses of PALSAR backscatter values were

conducted based on the ROIs for algorithm training. We

calculated the mean and frequency histograms of backscatter

values for the four land-cover types. These land cover types have

distinguishable backscatter characteristics. Water has the lowest

HH and HV backscatter due to its depolarization effect and strong

absorption of energy. According to our definitions in this study,

forest has a height over 5 m and has higher HH and HV

backscatter due to more canopy backscatter in tree trunks and leaf

Figure 1. The false color composite of PALSAR 50-m orthor-
ectified mosaic imagery (R/G/B = HH/HV/HH-HV) in Southeast
Asia in 2009. Country names were labeled as Myanmar (A), Thailand
(B), Laos (C), Vietnam (D), Cambodia (E), Malaysia (F), Brunei (G),
Indonesia (H), Philippines (I), Singapore (J), and East Timor (K). The inset
graphs show forest, cropland, water body, and built-up land,
respectively. The PALSAR 50-m mosaic data was unavailable in the
West Papua and Papua regions.
doi:10.1371/journal.pone.0085801.g001
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canopy. Croplands have lower HH and HV backscatter than

forest. Built-up lands show very complex characteristics as

buildings are complex and building orientations and corner

reflectors exist [47].

The thresholds in decision tree rules were determined according

to a statistical analysis of these ROIs. When we digitized the

training ROIs, we tried to find the area with pure land covers, by

assuming that the pixels within a 95% confidence interval of

backscatter values are pure land cover types, and other pixels with

the lowest and highest 2.5% backscatter values are likely mixed

land cover types. The resultant decision tree rules and PALSAR

data enable a simple and consistent approach to generate a

continental scale forest cover map in Southeast Asia. For water

body pixels, HH,216 and HV,224 threshold values were used.

For forest pixels, we used 3.5,Difference image ,6.5, 215,

HV,27 and 0.3,Ratio image,0.7 threshold values. For

cropland or grassland pixels, we used HV,216 threshold values.

We then assigned the remaining pixels as other land covers

including built-up land and shrubs, etc. A detailed description of

the backscatter signature of land cover types was recently reported

in our previous study [47]. The land cover map was generated by

using the decision tree function in ENVI 5.0 software (Fig. 3), and

then converted into a forest/non-forest map.

Validation with ground truth data
A systematic and rigorous validation is always an essential

concern in land cover classification, and is often carried out by

comparing resultant maps with (a) a higher-resolution imagery or

land cover product, and/or (b) ground truth samples from field

trips. Field trip samples are the most straightforward validation

references. Based on the validation ROIs mentioned in Section

2.4, validation of the PALSAR-based land cover map was

conducted, and the confusion matrix was reported in Table 1,

including user’s accuracy, producer’s accuracy, and overall

accuracy.

Comparison between PALSAR-based forest map and
other products

In addition to the above-mentioned validation with ground

truth data, we also compared the PALSAR-based forest map with

the two land cover products at three levels (national, subnational,

and pixel levels): (1) GlobCover 2009 [21] and (2) MCD12Q1

2009 [19]. The FAO FRA 2010 statistics [8] were also used to do

comparisons with the other three land cover products at the

national level as it has no statistical data at subnational or smaller

scales. Subnational boundary data were obtained from the GADM

database of Global Administrative Areas (http://www.gadm.org/

home). The pixel level comparison was conducted by aggregating

these spatial forest datasets (PALSAR, MCD12Q1, and Glob-

Cover) into forest fractional maps with 1.5-km61.5-km resolution

(1.5-km is the lowest common multiple of 50-m, 300-m, and 500-

m).

As different land cover products have different classification

schemes, we merged forest-related classes before the comparisons.

GlobCover has 22 land cover types, and seven forest-dominated

types were combined into one forest layer: closed to open

broadleaved evergreen or semi-deciduous forest, closed broad-

leaved deciduous forest, open broadleaved deciduous forest/

woodland, closed needle-leaved evergreen forest, open needle-

leaved deciduous or evergreen forest, closed to open mixed

Figure 2. The spatial distribution of geo-referenced field photos in the study area, as hosted in (A) the Global Geo-referenced Field
Photo Library. The circle size indicates the number of the field photos. The figure also shows the search options, selected photos with GPS
locations, and the link to extract the MODIS time series data. More information can be found in the data portal (www.eomf.ou.edu/photos). (B) The
Regions of Interest (ROIs) used for the algorithm training and results validation, which were acquired by referring to the field photos shown in Fig. 2A
and Google Earth.
doi:10.1371/journal.pone.0085801.g002

A 50-m Forest Map in Continental Southeast Asia

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e85801



broadleaved and needle-leaved forest, mosaic forest or shrubland/

grassland. MCD12Q1 has several land cover classification

schemes, and we used the classification scheme from the

International Geosphere Biosphere Programme (IGBP) with 17

land cover types. Five forest types (evergreen needleleaf forest,

evergreen broadleaf forest, deciduous needleleaf forest, deciduous

broadleaf forest, and mixed forest) were combined into one forest

layer. Land cover categories in FRA 2010 include forest, other

wooded land, other land and inland water bodies [8]; only the

forest category was used in this study. In addition, the GlobCover

and MCD12Q1 datasets used different forest definitions. The

GlobCover dataset uses 15% tree canopy cover and .5 m tree

height, while the MCD12Q1 dataset uses 60% tree canopy cover

and .2 m tree height [19,21].

Forest fragmentation analysis
Forest fragmentation has substantial impacts on animal and

plant habitat quality and biodiversity [48,49]. One forest

fragmentation model was recently developed and it considers

two indicators: forest area density (Pf) and forest connectivity (Pff),

within a certain ‘‘window’’ or ‘‘landscape’’ [48]. It has been widely

used to assess the forest fragmentation by using various satellite-

derived forest maps [62,63]. We employed this forest fragmenta-

tion model to conduct a forest fragmentation analysis. The forest

fragmentation was calculated based on a forest/non-forest binary

map (forest = 1 and non-forest = 0). The two indicators were

calculated with the following equations,

Pf ~
Nf

Nw

ð2Þ

Figure 3. The resultant land cover map of Southeast Asia based on the PALSAR 50-m orthorectified mosaic data in 2009 and the
decision tree algorithm.
doi:10.1371/journal.pone.0085801.g003

Table 1. The confusion matrix between PALSAR-based land cover classification in Southeast Asia and Regions of Interest (ROIs) by
referring to field photos and Google Earth.

Class Ground truth (GT) samples (pixels)
Total
classified pixels

User
Acc. (%)

Forest Cropland Water Others

Classification Forest 392800 2383 91 29036 424310 93%

Cropland 9837 102247 10434 1001 123519 83%

Water 25 18090 434735 452850 96%

Others 55826 6935 278 57982 121021 48%

Total GT pixels 458488 129655 445538 88019

Prod. Acc. (%) 86% 79% 98% 66%

doi:10.1371/journal.pone.0085801.t001

A 50-m Forest Map in Continental Southeast Asia
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Pff ~
Dff

Df

ð3Þ

where Pf is the proportion of forest pixels in a certain window

(e.g., 969), and is calculated by dividing forest pixels (Nf) in a

certain window by the total number of pixels (Nw); Pff is the forest

connectivity, and is calculated by dividing the pixel pair number

that includes at least one forest pixel (Dff) by the pixel pair number

that includes two forest pixels in cardinal directions (Df).

The resulting forest fragmentation map is grouped into six

fragmentation categories. The fragmentation categories and their

criteria are: (1) Patch, if Pf ,0.4; (2) Transitional, if 0.4,Pf ,0.6;

(3) Perforated, if Pf.0.6 and Pf - Pff .0; (4) Undetermined, if Pf .

0.6 and Pf = Pff; (5) Edge, if Pf .0.6 and Pf ,Pff; and (6) Interior, if

Pf = 1.0 [48]. Using the 50-m PALSAR-based forest map in 2009

as input data, the model was applied to calculate forest

fragmentation, under three window sizes: 969 pixels (450-

m6450-m), 21621 pixels (1050-m61050-m), and 1016101 pixels

(5050-m65050-m).

Results

Forest map from the PALSAR 50-m mosaic imagery in
2009

The resultant PALSAR-based forest map in 2009 estimates a

forest area of 2.566106 km2 for Southeast Asia (the forest area in

the West Papua and Papua regions was filled using MODIS-based

results due to PALSAR data unavailability, Table 2), accounting

for more than half of the entire land area in the region. A large

proportion of forests are concentrated in the northern hilly regions

of mainland Southeast Asia, western Sumatra and the island of

Borneo (Fig. 3). The land cover classification of four broad land

cover categories from the PALSAR 50-m mosaic imagery has a

high accuracy. The producer’s accuracy and the user’s accuracy of

forest were 86% and 93%, respectively, which indicates that the

accuracy of the PALSAR-based forest map at 50-m resolution was

good and the PALSAR mosaic data performs well in continentally

consistent forest mapping, which could be partly attributed to the

simple classification scheme.

Comparison of the forest products from PALSAR, MERIS,
MODIS, and FRA

At the continental level, the estimate of forest area from the

PALSAR-based forest map (2.566106 km2, Table 2) is very close

to the MCD12Q1 2009 (2.696106 km2), and higher than the FRA

2010 (2.146106 km2), and the GlobCover 2009 (1.736106 km2).

The differences in forest area estimates between the PALSAR-

forest map and that from GlobCover and FRA are significant. All

the three products from PALSAR, MODIS and MERIS show

generally consistent spatial distributions of forest but differ in some

regions (Fig. 4). Different spatial resolutions of these three maps

show varying visual effects.

At the national level, the forest area estimates from the four

datasets were compared and they differed in most countries

(Table 2). PALSAR-based forest estimates are more consistent

with those of MCD12Q1 at national scale. Root-mean-square

deviation (RMSD) of national forest areas is 1116103 km2

between PALSAR and FRA, 1436103 km2 between PALSAR

and GlobCover, and 396103 km2 between PALSAR and

MCD12Q1, respectively. In mainland Southeast Asia, the

PALSAR-based forest estimates are closer to FRA with RMSD

196103 km2, but differ slightly from GlobCover and MCD12Q1

with RMSD of 68 and 346103 km2, respectively, which is

consistent with our previous study [47]. The forest area estimates

varied substantially in Indonesia and the Philippines. In Indonesia,

PALSAR and MCD12Q1 estimate 1304 and 13966103 km2

forest respectively but the FAO FRA and GlobCover estimate 860

and 9446103 km2 forest respectively. In the Philippines, PALSAR

and MCD12Q1 estimate 140 and 1536103 km2 forest respectively

but the FAO FRA and GlobCover estimate 77 and 826103 km2

forest respectively. Even with the large differences in some

countries, the correlation coefficients between PALSAR-based

forest areas and those from the other three sources were all

significant at a national level (P,0.001, n = 11, see Table 2).

At the subnational (i.e., provincial) level, the forest areas from

PALSAR, MCD12Q1, and GlobCover products were compared.

Due to the PALSAR data missing in the West Papua and Papua

region, we excluded the four provinces of Irian Jaya Barat,

Maluku, Maluku Utara, and Papua from data analysis, and 269

subnational regions were used for the comparison. The PALSAR-

based forest areas are significantly correlated with the MCD12Q1

forest areas (y = 1.0989x; R2 = 0.98, p,0.0001, n = 269), and are

approximately 10% lower than the MCD12Q1-based forest

estimates (Fig. 5A). PALSAR-based forest areas are also linearly

correlated with the GlobCover forest areas (y = 0.7314x, R2 = 0.96,

p,0.0001, n = 269), but are 27% higher than the GlobCover forest

estimates (Fig. 5B).

At the pixel level, we compared these three datasets (PALSAR,

MCD12Q1, GlobCover) as aggregated grids. We first defined a

common size of grid cell (1.5-km61.5-km) for the three forest

maps and calculated percentages of forest areas within individual

grid cells. We then calculated the differences between two

fractional forest maps (PALSAR vs. MCD12Q1; PALSAR vs.

GlobCover). For the PALSAR and MCD12Q1 pair, approxi-

mately 79% of grid cells fell within +/2 30% discrepancies,

distributed mostly throughout Thailand, Borneo, and Cambodia

(Fig. 5A). In those areas with positive differences (.30%) (e.g., the

central plain of Thailand and Java Island), the PALSAR map

Table 2. National forest area comparison among three forest
maps from PALSAR, GlobCover, MCD12Q1 in 2009 as well as
the statistical data of FAO FRA 2010 (Unit: 6103 km2).

PALSAR FAO FRA GlobCover MCD12Q1

Brunei 5 4 3 5

Myanmar 343 318 235 359

Cambodia 70 101 56 55

East Timor 7 7 1 2

Indonesia 885*)+419**) 944 860 1396

Laos 148 158 112 184

Malaysia 222 205 180 274

Philippines 140 77 82 153

Singapore 0 0 0 0

Vietnam 128 138 111 131

Thailand 190 190 93 128

Total areas 2556 2141 1733 2688

*) Excluding the West Papua and Papua regions (including Maluku and North
Maluku) due to the original data missing of PALSAR 50 m Orthorectified mosaic
product in 2009.
**) The area of the West Papua and Papua regions was complemented
according to the MODIS land cover (MCD12Q1) product.
doi:10.1371/journal.pone.0085801.t002
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identified more forest areas than the MCD12Q1 map, where there

are extensive croplands and cities but small patches of forests. This

is attributed to the fact that PALSAR 50-m mosaic imagery can

identify small patches of forests, but moderate spatial resolution

MODIS (500-m) and MERIS (300-m) images tend to miss them.

In those areas where the PALSAR identifies less forest areas than

the MCD12Q1 and GlobCover, there are large areas of forests,

for example, northern Myanmar, central Borneo, northern

Sumatra and the central Sulawesi Islands. That is because 50-m

PALSAR images can identify small gaps or non-forest patches

while MODIS (500-m) and MERIS (300-m) images cannot

identify them. For the PALSAR and GlobCover pair comparison,

approximately 76% of grid cells fall within +/230 discrepancies.

The mild positive differences (0–30%) between PALSAR and

GlobCover datasets occur in 50% of the grid cells of the study

area. In the west of Borneo Island, south of Thailand, and mid-

eastern area of Sumatra Island, the PALSAR-based fractional

forest map is about 60% to 100% higher than that of the

GlobCover dataset (Fig. 5B), where tree plantations (e.g., rubber

plantation) were widely distributed.

Forest fragmentation assessment from the PALSAR forest
map at 50-m resolution

We used the fragmentation model mentioned in Section 2.7 and

the PALSAR-based forest map to calculate forest fragmentation

under three window sizes. The ‘‘patch’’ area percentage, which

represents the highest level of forest fragmentation, is estimated to

be approximately 39.7% in the fragmentation index map with a

969 window (450-m6450-m), 37.7% in the map with a 21621

window (1050-m61050-m), and 35.5% in the map with a

1016101 window (5050-m65050-m) (Fig. 6). Most of the ‘‘patch’’

area is distributed in those regions dominated by urban and

Figure 4. The spatial distribution of forest cover in the Southeast Asia from (A) PALSAR 2009 forest map, (B) GlobCover 2009 forest
map, and (C) MCD12Q1 2009 forest map. The blue box in A shows the region missing PALSAR data (the West Papua and Papua regions).
doi:10.1371/journal.pone.0085801.g004

Figure 5. The comparison between the three fractional forest maps at a spatial resolution of 1.5-km by 1.5-km gridcell: (A) PALSAR
– MCD12Q1 and (B) PALSAR – GlobCover. The maps show the differences between two maps. The inset histograms show frequencies at various
levels of difference between two maps. The scatter plots show the comparison in forest area at the sub-national level among PALSAR, MCD12Q1 and
GlobCover in 2009. The data from the four provinces (Irian Jaya Barat, Maluku, Maluku Utara, and Papua) are excluded due to missing PALSAR data.
doi:10.1371/journal.pone.0085801.g005
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croplands (Figs. 7A-C). The ‘‘interior’’ area, which represents the

lowest level of forest fragmentation or intact forest, is estimated to

be approximately 6.6% in the fragmentation index map with 969

pixels, 0.4% in the map with 21621 pixels, and 0% in the map

with 1016101 pixels (Fig. 6). Most of the ‘‘interior’’ area is

distributed on Borneo Island. The lowest (interior) and highest

(patch) levels of forest fragmentation tend to decrease in relation to

an increase in window size (Fig. 6). Thus, the fragmentation index

is spatial scale-dependent. The large window size (e.g., 1016101

pixels in this study) could reduce the estimates of both ‘‘patch’’ and

‘‘interior’’ areas. The finer resolution (e.g., 50-m PALSAR) forest

map enables us to carry out forest fragmentation analysis at a small

window size (e.g., ,1000-m) and to quantify forest fragmentation

with higher accuracy and finer details. Accurate fragmentation

information from the 50-m forest cover map in this study could

better serve the scientific and management communities for

biodiversity conservation.

Discussion

Advantages of PALSAR-based tropical forest mapping
PALSAR-based tropical forest mapping in this study has three

advantages: a) cloud-free capability, b) high spatial resolution, and

c) a simple algorithm that is built upon the strength of radar data

which are calibrated physical measurements. First, cloud-free land

observation capability improved data accessibility (complete

spatial coverage) which is the largest obstacle or source of

uncertainty for land cover mapping in the moist tropical regions

[64,65]. Second, the 50-m forest map is the first forest map in

Southeast Asia with a finer resolution than one hundred meters

[4,22], which is especially meaningful for Southeast Asia as it has

fragmented landscapes in most areas. Previous optical images with

hundred-meter resolution had difficulty in acquiring such detailed

information in complex landscapes. Third, several studies used the

unsupervised classification method for forest mapping in Southeast

Asia, due to the spatial heterogeneity present in the large extent

[4,15–18,22]. However, the unsupervised method is time con-

suming and requires experts with local knowledge for post-

classification interpretation and labeling. In this study, we

developed and used a continentally consistent decision tree

algorithm to map forest in Southeast Asia with a great time

savings and limited human and financial resources. When using

the PALSAR-based forest map as a reference map, which has finer

spatial resolution and higher accuracy in forest mapping, our

analysis suggests that the MCD12Q1 data product could

overestimate forest areas while the GlobCover data product is

likely to underestimate forest areas in the region.

Sources of uncertainty and discrepancy among the forest
maps

Several sources of uncertainty exist for PALSAR-based map-

ping of tropical forests, and they include relief-effects, seasonal

effects, spatial resolution of imagery, forest definition, and

accuracy assessment. The relief-effect is always a challenge to

tackle with SAR data [43,66], which tends to underestimate forest

areas in the mountainous regions such as northern IndoChina,

western Sumatra and Borneo. However, Figure 5 shows that

PALSAR did not significantly underestimate forest in those

regions when compared with the GlobCover and MCD12Q1

datasets; and limited underestimates might exist in the border

regions of northern Myanmar and northern Vietnam (Fig. 5).

Therefore, the effect of relief on the resultant forest map must exist

but could be limited. The PALSAR images were acquired from

June to October in 2009, which is part of the wet season in some

areas; and water content of soils in the wet season could decrease

the backscatter of forests and cause the underestimate of forest

areas to some degree.

Figure 6. The spatial distribution of forest fragmentation in Southeast Asia with (A) 969 pixel window, (B) 21621 pixel window, and
(C) 1016101 pixel window. The stacked-bar histogram charts (D, E, and F) under the maps show the percent areas of five forest fragmentation
categories corresponding with the forest fragmentation maps (A, B, and C).
doi:10.1371/journal.pone.0085801.g006
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Scale and resolution issues greatly affect the forest definitions

and resultant forest cover maps. Different spatial resolutions of

satellite images have different representation capabilities against

the definition of forest cover. The pixel sizes in the GlobCover and

MCD12Q1 datasets are much larger than the minimum unit area

(0.5 ha) of FAO forest definition, and they tend to have more

mixed pixels. Therefore, forest maps derived from finer resolution

image data tend to reduce these uncertainties in forest area

estimations. In this study, the 50-m spatial resolution PALSAR

imagery reduces the issue of mixed pixels substantially, which has

led to higher accuracy forest cover maps, when compared to 300-

m (MERIS) and 500-m (MODIS) imagery.

In addition, the discrepancies among these four datasets could

be in part attributed to the aggregation processes of the

MCD12Q1 and GlobCover forest-related land cover types in this

study, as they use different land cover classification schemes

[19,21,61]. In the GlobCover 2009 land classification system,

several land cover classes are a mixture of multiple vegetation

types due to the coarse spatial resolution, e.g. the type of ‘‘mosaic

vegetation (grassland/shrubland/forest)/cropland.’’ In the FAO

FRA 2010 report, forest areas excluded those with agricultural

purposes or urban development. However, it is difficult to

distinguish detailed forest use types (forestry use or agricultural

use targets) in the remote sensing datasets at moderate spatial

resolutions. One reason for their area discrepancy (Table 2) may

be a large area of plantations, since they are considered forest in

some products such as the PALSAR-based forest in this study and

MCD12Q1, while it is not in the FAO FRA and GlobCover. For

example, according to the FAO FRA 2010 report, Indonesia and

the Philippines have a higher ‘‘Other wooded land’’ proportion

(2.16105 km2 and 1.06105 km2 respectively) [8].

The accuracy assessment of forest cover maps at continental

and global scales is a very challenging task, as few research projects

are able to carry out a rigorous sampling design (e.g., a systematic

sampling) [67,68] due to limited budgets and human resources. In

our project we were also unable to carry out statistically rigorous

sampling design for our field trips. In this study, the accuracy

assessment of our PALSAR-based forest map depends on the

availability of geo-referenced field photos from the Global Geo-

Referenced Field Photo Library, which is a community remote

sensing and citizen science data portal. The long-term objective of

the Field Photo Library is to help develop a systematic sampling

design with geo-referenced field photos available in each sampling

grid. At this moment, the Field Photo Library is still in an early

stage, and it does not have field photos in many large areas (e.g.,

Borneo Island and Maylasia, see Fig. 2), despite a collection of 30

000+ photos in Southeast Asia. As this study and previous studies

[47,69] demonstrate the value of geo-referenced field photos as

ground truth data, more contributions from the scientific

community and citizen scientists are likely to occur in the near

future. Recently we have released ‘‘Field Photo’’ iPhone App and

it is freely available to the public, which may encourage more

stakeholders and citizen scientists to take geo-referenced field

photos and share them. The application can be downloaded at

iTunes. We believe that the Field Photo Library will grow

substantially and rapidly, and provide an effective means of in-situ

Figure 7. Visual interpretation and comparison of different land cover products in a region mixed with natural forest and oil palm
plantation. A) the location of the case region in Borneo Island, Southeast Asia; B) the false color composited graph of Landsat 5 image (30 m, path/
row = 117/56, R/G/B = Band NIR/Red/Green) on August 11, 2009; C) the false color composited graph of PALSAR image (R/G/B = HH, HV, HH/HV) in
2009; D) PALSAR-based land cover map (50 m) in 2009 from this study; E) GlobCover 2009 land cover map (300 m); and F) MCD12Q1 2009 land cover
map (500 m). The differences of these three products in separating natural forest and oil palm plantation are obvious, MCD12Q1 considers oil palm
plantation as forest, while GlobCover and PALSAR don’t, and PALSAR has better performance in separating natural forest and oil palm plantation.
doi:10.1371/journal.pone.0085801.g007
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data collection that could meet the needs for systematic sampling

design in regional or global land cover accuracy assessment in the

future.

An issue on separability between natural forests and
forest plantations

Several land cover classification maps that used optical images

(e.g., MCD12Q1) do not separate natural forests from forest

plantations due to their similar spectral characteristics [19,21].

Here we used natural rubber and oil palm, two important

plantations widely distributed in Southeast Asia, as preliminary

examples to evaluate to what degree these four data products

separate natural forests and forest plantations.

Southeast Asia contains about 75% the world’s rubber

plantations (1.016105 km2), according to an incomplete statistic

from the FAO FRA 2010 [8]. Rubber plantations were included as

forest in the FRA report [8]. Rubber plantations were also

included in our PALSAR-based forest map as well as the MODIS

and MERIS-based forest maps, as verified according to the

ground truth data of rubber plantations from the Field Photo

Library. That is, the spectral or backscatter based remote sensing

approaches used in these three products did not separate rubber

plantations from natural forests. Previous studies have shown that

rubber plantations and natural forests have similar physical and

spectral characteristics during most parts of the plant growing

season, when optical remote sensing images were used [70]. Our

previous studies indicated that deciduous rubber plantations can

be identified by integrating phenological information from time

series optical imagery (e.g., MODIS or Landsat) and forest

structure information from PALSAR [60,69].

Oil palm is another important plantation type in Southeast Asia.

Indonesia and Malaysia are the largest oil palm producers in the

world, and their production of palm oil accounts for 87% of the

global production [71]. In oil palm plantations, oil palm trees are

planted in unique spatial structures. Fig. 7 shows the forest maps

from different products in a sample region of Borneo Island, where

oil palm plantations and natural forests are mixed together

(Fig. 7A). By referring to the 30-m Landsat color composition map

in 2009 (Fig. 7B), we see that PALSAR has better performance in

separating natural forests and oil palm plantations than the

GlobCover and MCD12Q1 datasets. The MCD12Q1 does not

separate oil palm plantations and natural forests, and reports only

the forest category (Fig. 7F). The GlobCover considers oil palm

plantations as cropland or a mosaic of cropland and vegetation

(Fig. 7E). PALSAR also has higher spatial resolution than

GlobCover and it can show a clear boundary between natural

forests and oil palm plantations (Fig. 7C, D & E). The specific

physical shape (large crown and less branches) of the oil palm trees

[72] causes higher HH and lower HV backscatter, resulting in the

larger difference between HH and HV. Two recent studies used

the backscatter difference between HH and HV as the primary

indicator to map oil palm plantation, and pixels with HH-HV.

6.5 are identified as oil-palm plantations [10,53]. The HH-HV,

6.5 rule was used in the decision tree algorithm in this study and

our previous study [47], and the PALSAR-based forest map does

not include oil palm plantations. The rapid expansion of oil palm

plantations in Southeast Asia calls for an enhanced capability for

mapping oil palm plantations and natural forests.

Potential applications of the PALSAR 50-m forest map in
forest fragmentation

We showcased the application of the 50-m forest map for

analysis of forest fragmentation, which plays an important role in

ecosystem services and biodiversity. The analysis of forest

fragmentation was found to be dependent on the spatial scale

(window size), which is consistent with previous studies [13,73], for

example, Figure 6 indicates that there is much less interior forest

area when using a 1016101 window than using a 969 window.

The spatial comparisons of fragmentation at national levels are

meaningful only with consistent window size. The smaller window

tends to give more details about the forest fragmentation pattern;

also, the accuracy of the original forest map plays a critical role in

the accurate evaluation of forest fragmentation. Our 50-m forest

map in this study has richer spatial information than the existing

optical remote sensing products and is expected to provide more

effective support for evaluation of forest fragmentation. By

comparing the fragmentation map (Figure 6) with a potential

species richness projection from a previous study [74], we found

that forest fragmentation was spatially consistent with the potential

species richness. Consequently, the forest fragmentation map

could contribute to the biodiversity conservation and habitat

planning.

The fragmentation map is also expected to provide decision

support for the forest management. The fragmentation level of the

interior is mainly located in Borneo Island according to Figure 6a,

and is surrounded with some pixels with edge and perforated

classes, which implied that the primary tropical forest has been

deforested into a fair number of small holes. That is also shown in

Figure 6b, where the same regions showed as edge classes at the

1050-m window. The land use conversion to plantations was also

reported in previous studies [75,76]. The areas with less severe

edge effects and may recover more easily and convert to interior

forest.

The resultant 50-m forest cover map in this study is also

expected to serve as a baseline map for forest resource inventory,

reducing emissions from deforestation and forest degradation

(REDD+) implementation, deforestation monitoring, biodiversity

conservation, and habitat planning in Southeast Asia. For

example, previous studies have shown that the largest source of

uncertainties in estimates of carbon emissions from deforestation

in the tropical zone is attributed to the poor quality of available

deforestation maps [29,30,77]. This highly accurate forest map

will support carbon emission estimation more effectively. Also, the

continuous L-band SAR data will facilitate forest change detection

in the long term. Although PALSAR was out of service as of April

2011, the Advanced Land Observing Satellite-2 (ALOS-2) will

succeed the mission with enhanced capabilities. By integrating

forest maps from JERS-1 images, forest changes from the 1990s to

circa 2015 can be quantified in the foreseeable future [45].

Conclusion

Tropical forests play an important role in the carbon cycle,

biodiversity conservation, and other ecosystem services closely

related to human well-being. Our understanding of these

environmental issues is dependent on the resolution and accuracy

of the tropical forest maps. For example, the applicability and

reliability of forest fragmentation evaluation greatly depends on

the spatial resolution of forest maps. To our knowledge, this is the

first 50-m forest cover map of Southeast Asia, derived from the

cloud-free PALSAR 50-m orthorectified mosaic imagery. Our

preliminary analysis highlights the potential contribution of this

50-m forest cover map to forest fragmentation analysis. The

PALSAR-based forest map can be anticipated to serve in forest

resource inventory, deforestation monitoring, REDD+ implemen-

tation, and biodiversity conservation, and it can also be used to
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improve simulations of regional and global biogeochemical,

hydrological, and climate models [28].
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