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Pastoralist households across East Africa facemajor livestock losses during drought periods that can cause persis-
tent poverty. For Kenya and southern Ethiopia, an existing index insurance scheme aims to reduce the adverse
effects of such losses. The scheme insures individual households through an area-aggregated seasonal forage
scarcity indexderived fromremotely-sensed normalized difference vegetation index (NDVI) time series. Until re-
cently, insurance contracts covered animal losses and indemnity payouts were consequently made late in the
season, based on a forage scarcity index incorporating bothwet and dry seasonNDVI data. Season timing and du-
ration were fixed for thewhole area (March–September for long rains, October–February for short rains). Due to
demand for asset protection insurance (pre-loss intervention) our aim was to identify earlier payout options by
shortening the temporal integration period of the index.We used 250m-resolution 10-day NDVI composites for
2001–2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS). To better describe the period
duringwhich forage develops, we first retrieved per-pixel average season start- and end-dates using a phenolog-
icalmodel. These dateswere averaged per insurance unit to obtain unit-specific growing period definitions.With
these definitions a new forage scarcity index was calculated. We then examined if shortening the temporal peri-
od further could effectively predict most (N90%) of the interannual variability of the new index, and assessed the
effects of shortening the period on indemnity payouts. Our analysis shows that insurance payouts could bemade
one to three months earlier as compared to the current index definition, depending on the insurance unit. This
would allow pastoralists to use indemnity payments to protect their livestock through purchase of forage,
water, or medicines.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Climate variability causes large inter-seasonal fluctuations of rainfall
across East Africa. Large parts of East Africa have two rainfall seasons per
year with rains from approximately March to May - commonly referred
to as ‘long rains’ - and the ‘short rains’ during October–December
(Herrmann&Mohr, 2011; Vrieling, de Leeuw, & Said, 2013).While rain-
fall variability during the short rains is strongly influenced by Indian
Ocean sea surface temperatures that modulate atmospheric circulation
and convection (e.g. Ummenhofer, Sen Gupta, England, & Reason,
ulty ITC, P. O. Box 217, 7500 AE

utwente.nl (A. Vrieling),
giar.org (A.G. Mude),
hofer@whoi.edu
2009), climatic drivers for the long rain variability are less clear
(Camberlin & Okoola, 2003; Lyon, 2014; Williams & Funk, 2011). Irre-
spective of the determinants of this variability, seasonal rainfall fluctua-
tions notoriously and frequently lead to drought conditions in the
region (Hastenrath, Polzin, & Mutai, 2007; Rojas, Vrieling, & Rembold,
2011; Viste, Korecha, & Sorteberg, 2013) thereby affecting large num-
bers of households that predominantly depend on sufficient rainfall
for sustaining their livelihoods.

Pastoralist households that reside in the region's arid and semi-arid
lands (ASAL) are one of the groups strongly affected by droughts. Dry
years can bring about a high mortality of their livestock due to reduced
forage and water availability and outbreaks of epidemic diseases, espe-
cially if adverse conditions persist during multiple seasons (Megersa
et al., 2014a). Although pastoralists are a heterogeneous group in
terms of wealth (Little, McPeak, Barrett, & Kristjanson, 2008), those
with already small herd sizes risk falling into persistent poverty after
drought-induced livestock losses (Barnett, Barrett, & Skees, 2008;
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Lybbert, Barrett, Desta, & Coppock, 2004; Toth, 2015). Due to the spatial-
ly covariate nature of drought with its effects generally felt across large
regions, coping mechanisms such as herd migration or local-sharing
norms (Dixit, Levin, & Rubenstein, 2013) are often inadequate to pre-
vent adverse impacts on livelihoods. Moreover, the increased demand
for limited resources in confined areas can cause violent conflicts be-
tween pastoralist groups (Detges, 2014; Raleigh & Kniveton, 2012).
Hence, given the significance of the drought hazard, efficient mitigation
strategies are needed that reduce impacts of drought-related risk to pas-
toralists in East Africa.

One promising strategy is to offer pastoralists insurance that pays
out when drought-related livestock losses occur, or alternatively prior
to losses in an effort to protect against mortality. Traditional claim-
based insurance would require expensive loss verification, making it
an unviable option for remote pastoralists with small herds (de Leeuw
et al., 2014). An alternative is index-based insurance, whereby indemni-
ty payouts are made on the basis of a biophysical index that correlates
with the losses incurred (Barnett & Mahul, 2007; Brown, Osgood, &
Carriquiry, 2011; Leblois & Quirion, 2013). During the past 10 years,
many index-based insurance schemeswere piloted in developing coun-
tries to insure households against negative weather impacts on crop
yields and livestock mortality (Miranda & Farrin, 2012). One of the crit-
ical elements for the success of such schemes is to have a low so-called
‘basis risk’, i.e. the risk that households do not get paid when they suffer
losses and vice-versa. Because basis risk depends on the strength of the
correlation between the index and losses, index selection is important.
Often-used data sources for index construction include rainfall, either
measured by rain gauges or estimated from satellite observations
(Tapiador et al., 2012), and satellite-derived vegetation indices like the
normalized difference vegetation index (NDVI: Tucker, 1979). However,
after data source selection many design options remain, e.g. regarding
spatial and temporal integration (de Leeuw et al., 2014), before the
data source can be reliably used as an index (Brown et al., 2011).

In 2010, an index-based livestock insurance (IBLI) project was
piloted in Marsabit County, northern Kenya (Chantarat, Mude, Barrett,
& Carter, 2013), and subsequently expanded to other areas of Kenya
and southern Ethiopia. From the onset of the pilot phase to present,
IBLI has used satellite-derived NDVI time series to construct a seasonal
forage scarcity index. However, the method to translate the original
NDVI series into the index has changed through the years in an ongoing
attempt to reduce basis risk (Vrieling et al., 2014). In the current design,
10-daily NDVI composites from MODIS (Moderate Resolution Imaging
Spectroradiometer) at 250 m resolution are spatially averaged per ad-
ministrative unit, temporally averaged per season, and subsequently
compared between years to estimate the relative seasonal forage condi-
tion per unit. Pastoralists within an administrative unit receive a pay-
ment when the index falls below a threshold, which can be specified
in terms of return period (e.g. a payment is made whenever the index
is less or equal to the index reading corresponding to a below-normal
season with an average recurrence interval of five years). Originally
for Marsabit the index was statistically fitted to household-level live-
stock mortality data (Chantarat et al., 2013), but because of the lack of
mortality data or poorer data quality for other regions IBLI moved to a
more straightforward ‘forage scarcity contract’ that uses the NDVI-
derived index and its temporal characteristics directly. Although the
evaluation of basis risk in these contracts requires validation, we can al-
ready envisage further index improvements merely from a remote
sensing perspective (e.g., see the discussion in Vrieling et al., 2014).
One such improvement has become more urgent following repeated
demand by pastoralist groups for earlier indemnity payouts after the
onset of drought events.

Payouts to insured pastoralist households can only bemade after the
season for which the index is calculated is concluded. Until recently, po-
tential payout periods were fixed in March and October, because the
two temporal windows used for temporal averaging were defined as
the coupled long rains-long dry season (LRLD: March–September) and
the coupled short rains-short dry (SRSD: October–February) season
(Chantarat et al., 2013). However, inclusion of the full dry periods (ap-
proximately July–September for LD and January–February for SR) im-
plies that livestock suffer forage scarcity for a longer period in case of
a failed rainy season, andmay have died before a payout ismade. There-
fore, this scheme financially compensates losses and allows pastoralists
to replace dead animals, rather than creating options for pastoralists to
protect animals through purchase of fodder, water, or medicines or
other costly mitigating interventions. Noting that biomass (i.e. forage)
is not developing during the dry periods and consequently NDVI pro-
vides limited information about forage conditions in these periods
(Vrieling et al., 2014), good scope exists to shorten the temporal win-
dows without losing valuable information on seasonal forage availabil-
ity. An effective approach to better define the period of forage
development across the season is to estimate season start- and end-
dates directly from temporal NDVI profiles by analysing vegetation
green-up and decay using phenological analysis (Meroni, Verstraete,
Rembold, Urbano, & Kayitakire, 2014; Vrieling, de Beurs, & Brown,
2011).

The goal of this paper is to achieve a better identification of the tem-
poral integration period for IBLI's forage scarcity index, which can result
in earlier insurance payouts to pastoralists. For this purpose, we first es-
timated location-specific season start- and end-dates from phenological
analysis of NDVI time series. Subsequently we evaluated if end-dates
can be brought forward further in time while retaining good predict-
ability of end-of-season index variability.

2. Study area and data

The study area comprises a total of 131 spatial units, which are the
current insurance units used in the IBLI project. The units cover nine
Kenyan counties (Baringo, Garissa, Isiolo, Mandera, Marsabit, Samburu,
Tana River, Turkana, and Wajir) and the Borana zone of southern
Ethiopia (Fig. 1). They are based on administrative boundaries, but a
number of adjustments were made in collaboration with local stake-
holders to better reflect agro-ecological conditions and rangelands
utilized byhouseholds residing in the unit. The unit size is variable rang-
ing from approximately 100 km2 to 13,000 km2 (average 3000 km2)
with smaller units principally located in Baringo county. Based on a
30-year TAMSAT rainfall climatology (Tropical Applications of Meteo-
rology using satellite and ground-based observations: Maidment et al.,
2014) the study area has an average annual rainfall between 150 and
500 mm, the only exceptions being Baringo County (~700 mm) and
the west part of Borana (~550 mm). Most inhabitants of the study
area depend on livestock for their livelihood, although crop cultivation
is increasingly important in the relatively wetter areas as a diversifica-
tion strategy (Rufino et al., 2013). In the drier parts, the more
drought-resistant camels and goats are the dominant livestock species,
whereas in wetter parts cattle and sheep prevail. Given the recurrent
droughts in the region, pastoralists are also shifting their livestock port-
folios to include the more drought-hardy camel and goats (Boru,
Schwartz, Kam, & Degen, 2014; Megersa et al., 2014b).

The NDVI time series used in this study is the eMODIS product that
the United States Geological Survey (USGS) produces from MODIS
data acquired by the Terra satellite, currently operationally used in
IBLI. The eMODIS product consists of 10-day maximum value NDVI
composites at 250 m resolution (Jenkerson, Maiersperger, & Schmidt,
2010). Although the composites are produced every five days resulting
in six temporally overlapping composites per month, we only used the
composites for day 1–10, 11–20, and 21-last day of each month. To re-
duce remaining atmospheric effects that degrade the NDVI signal
(e.g., clouds), USGS applies a temporal smoothing operator, a standard
technique for pre-processing NDVI time series. The operator used for
the eMODIS product is the Swets algorithm; for each pixel time series
a weighted least-squares regression is applied to a moving temporal
window assigning largest weights to local peaks in the NDVI profile,



Fig. 1. Study area; the thin lines depict the 131 insurance units located in Kenya and Borana, Ethiopia. The background image shows the average NDVI (2001–2014) from 10-day eMODIS
composites. For spatial reference, the image extends south to cover the entire Kenyan territory.
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and smallest weights to local valleys (Swets, Reed, Rowland, & Marko,
1999) and resulting in multiple regression lines for each data point. Av-
eraging these lines for each point and interpolating between data points
results in a continuous smoothed NDVI profile. We used the filtered
eMODIS data for the East Africawindow fromMarch 2001 to September
2014, covering precisely 14 LRLD (March–September) and 13 SRSD
(October–February) seasons.

3. Methods

3.1. Phenological analysis from NDVI series

Phenology is the study of the timing of biological events. In relation
to satellite observations, the term “land surface phenology” is frequently
used to refer to the analysis of spatial–temporal patterns of vegetation
development (de Beurs & Henebry, 2005). In this studywe applied phe-
nological analysis of NDVI series to estimate location-specific start-of-
season (SOS) and end-of-season (EOS) with the aim to describe the
key period when forage biomass develops. Many approaches exist to
perform phenological analysis from NDVI time series (de Beurs &
Henebry, 2010). In this study,we chose the approach recently published
by Meroni et al. (2014), which is well capable of dealing with the bi-
modal seasonality common to East Africa. The processing steps per-
formed independently on each pixel include:

1) For the entire eMODISNDVI time series,we evaluated if at least 60% of
the 10-day composites had valid NDVI values for land (between 0.0
and 1.0) and if the dynamic range (here taken as the difference be-
tween the 95th and 5th percentile of the time series values) was at
least 0.10. If these conditionswere notmet, the pixelwasmasked out.
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2) We assessed the seasonality of the NDVI time series (i.e. uni- or bi-
modal). To achieve this, we deviated from the original description
by Meroni et al. (2014). Whereas they used an autocorrelogram,
here we applied a Lomb normalized periodogram (Scargle, 1982)
to evaluate the pixel's power spectrum and the ratio between the
power associated to an annual single and double frequency. Com-
paring visually a large number of NDVI temporal profiles with this
ratio, a threshold value of 6 was selected below which a pixel
was labelled as bimodal. The periodogram was preferred to the
autocorrelogram as the latter failed to detect the correct seasonality
when the NDVI time series showed poor periodicity (i.e., lack of a
dominant evolution pattern throughout the years) or predominance
of one of the two growing seasons.

3) Multi-annualmedian values for each 10-day period were calculated.
Based on the ‘median year’ and the estimated seasonality, the NDVI
minima were set as breakpoints between seasons. To remove local
minima, the ‘median year’ is iteratively smoothed until the number
of breakpoints matches the expected seasonality. This is achieved
through applying aweightedmoving average filter that assigns larg-
er weight to central values.

4) For each individual season, i.e. the NDVI values falling between two
breakpoints, a parametric double hyperbolic tangent model was
fitted to the data.

5) SOS was then estimated as the moment when the fitted NDVI
model for the season exceeded 20% of the local growing amplitude
(i.e. between minimum NDVI before green-up and maximum NDVI
of that season), and EOS when it falls below 80% of the decay ampli-
tude (i.e. between maximum NDVI of the season and the following
minimum NDVI after decay).

Several thresholds have been proposed to obtain SOS and EOS esti-
mates from the amplitude of vegetation index time series ranging
from 10% to 50% depending on the phenological event and vegetation
type targeted (e.g. Jönsson & Eklundh, 2002; White, Thornton, &
Running, 1997). With the objective of accumulating the NDVI over the
season to get a proxy of total season biomass production (Section 3.2),
we set the SOS and EOS thresholds to 20% and 80% of the amplitude
range in order to cover the part of the seasonwhenmost of the biomass
production occurs. While we acknowledge that a particular threshold
choice is to somedegree arbitrary, the sensitivity of the threshold choice
on the biomass proxy is relatively low, because 1) it affects the period
for which NDVI is averaged at moments (i.e., the beginning and end of
season) when NDVI is small and has limited temporal variability com-
pared to the central part of the season, thus providing a relatively
small contribution to the seasonal value, and 2) the same thresholds
are applied for the entire analysis, allowing a consistent relative com-
parison between the seasonal indices.

The NDVI phenological analysis resulted per pixel in a 14-year time
series of season-specific SOS and EOS values. Given the dominance of bi-
modal seasons across the study area, we used these values to calculate
the multi-annual average and standard deviation of SOS and EOS esti-
mates per pixel for each season (long and short rains). For each insur-
ance unit (U), we then computed the spatial average of these
measures by considering all pixels for which bimodality was detected
inside the unit. This gave per unit the average SOS and EOS estimate
as well as its (temporal) standard deviation. With the aim of setting a
fixed temporal window for which the index is to be computed, we wid-
ened the temporal range defined by the average SOS and EOS estimate
to take into account possible earlier [later] than average start [end] of
seasons. For this purpose we considered the information provided by
the temporal standard deviation of the two events for each unit as a
measure of the interannual variability of the seasonality. To define the
time period to be used, two constraintswere considered. First, widening
the window has the desired effect of including earlier (or later) than
usual growing seasons but also the undesired effect of including more
out-of-season signal. Second, widening the temporal window should
not result in an overlap between the end and the start of two consecu-
tive seasons for any spatial unit. This latter condition was satisfied by
subtracting half a standard deviation from the area-average SOS esti-
mate and adding half a standard deviation to the EOS estimate. We
finally translated the resulting dates into a number from 1 to 36,
reflecting the 10-day period (or: dekad) that the date represents, i.e. 1
being 1–10 January. We further refer to these adjusted unit-specific
10-day periods as SOSU⁎ and EOSU⁎ (where the asterisk refers to the ad-
justment and U to the insurance unit).

3.2. Forage scarcity index calculation

The forage scarcity index indicates how forage conditions for a spe-
cific season compare to themulti-annual average conditions and is com-
puted with the processing steps summarized in Fig. 2. First, per
insurance unit, a spatial average (NDVIUt ) for each 10-day time step t is
calculated from each NDVI composite (Fig. 2b). For computing NDVIU

t ,
we excluded all pixels for which the phenological analysis found no
clear seasonality (Section 3.1). These generally correspond to extremely
arid areas with limited forage presence. Pixels with unimodal seasonal-
itywere retained however, as thesemay constitute important sources of
forage. We can write this step as:

NDVItU ¼ ∑p¼N
p¼1 NDVI

t
p=N; p∈U ð1Þ

where p is one of the N pixel locations within unit U for which the phe-
nological analysis gave a uni- or bimodal seasonality. Using unit-specific
SOSU⁎ and EOSU⁎ (Section 3.1) we then performed temporal averaging of
the spatial aggregates (Fig. 2c) resulting in a seasonal average NDVI per
unit (Fig. 2d), i.e.:

NDVIsU ¼ ∑t¼EOS�U
t¼SOS�U

NDVItU=T ð2Þ

where s represents a long rain or short rain season in a specific year, and
T is the total number of time periods t within that season (as defined
by SOSU⁎ and EOSU⁎). To assess how NDVIU

s relates to multi-annual
normal conditions, it is transformed into a z-score, using the seasonal

average NDVI (NDVIsU
�

) and its standard deviation (σ(NDVIUs )) based
on all years (Fig. 2e). This z-score indicates how many standard

deviations NDVIUs is greater or less than NDVIsU
�

.

zNDVIsU ¼ NDVIsU � NDVIsU
�

σ NDVIsU
� � : ð3Þ

Given the dominant bimodality in the region, the average and stan-
dard deviation are calculated separately for the long and the short rain
seasons.

3.3. Predictability of the forage scarcity index before end-of-season

To assess if EOSU⁎ dates can be brought further forward in time, we
evaluated for each unit if the temporal variability of the forage scarcity
index (zNDVIUs ) can be accurately predicted before EOSU⁎. To achieve
this, we adapted Eq. (2) in order to integrate NDVIU

t not merely over the
full phenological cycle, but also over shorter time periods, i.e. from SOSU⁎
until EOSU⁎-t (t = 1,2,3,…). In addition to a 14-year series of zNDVIUs for
the long rains, and 13-year series of zNDVIUs for the short rains, we now
also obtain the same series for a partial season (ps), i.e. zNDVIUps.

Separately for the long and short rains, we applied a jackknife tech-
nique (leaving one year out at the time) to evaluate the predictability of
zNDVIU

s based on zNDVIU
ps. For each jackknifed year, we estimated linear

regression coefficients on the remaining dataset, modelling zNDVIU
s

based on zNDVIU
ps. For example for the long rains, jackknifing 14 times re-

sulted in 14 predictions of zNDVIUs (i.e. zNDVIsÛ). We note that a possible



Fig. 2. Processing steps for obtaining the forage scarcity index.
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alternative approach towards shortening the season only focusing on left-
tail drought events (that would translate into indemnity payouts) would
result in too few data points per unit; hence we focus on the full interan-
nual index variability.We then computed the coefficient of determination
between the predicted and original zNDVIUs series as follows:

R2
cv ¼ 1�

∑s¼2014
s¼2001 zNDVIsU � zNDVIsÛ

� �2

∑s¼2014
s¼2001 zNDVIsU � zNDVIsU

�� �2 ð4Þ

where Rcv2 is the cross-validated coefficient of determination, andzNDVIsU
�

is themulti-annual average zNDVIUs (which is equal to 0when considering
all years based on the definition of the z-score). Rather than a simple
R2 that expresses the variance explainedbetween zNDVIU

ps and zNDVIU
s , the

Rcv
2 expresses how accurately zNDVIU

ps can predict zNDVIUs with a linear
model. Following the calculation ofRcv2 for all possible temporal definitions
of zNDVIUps, we then determined per insurance unit the earliest 10-day pe-
riod when Rcv

2 was greater than 0.90. We refer to this period here as
EOSU⁎90. The threshold value of 0.90 was selected as it represents a highly
accurate prediction, within 10%, of the interannual zNDVIUs variability.

3.4. Implications for indemnity payouts

To evaluate the effect of shortened integration periods on indemnity
payouts, we apply a simple insurance model to both the
zNDVIU

s and the zNDVIU
ps series that use the EOSU⁎90 definitions for each

unit. The model calculates the indemnity payout P (as percentage of
the insured amount) as a function of the zNDVIU

s (or zNDVIUps). It can be
written as:

P ¼
100; if zNDVIsU b exit
100 � trigger � zNDVIsU

� �
= trigger � exitð Þ; if trigger N zNDVIsU N exit

0; if zNDVIsU N trigger

8<
:

ð5Þ
where the trigger is the z-score threshold below which the insurance
starts to pay, and exit is the z-score level corresponding to maximum
payment (100%). To set trigger and exit levels, we translated the return
period to a corresponding z-score. Following IBLI's current implementa-
tion, we set exit as a one-in-hundred seasons event (z = −2.326)
and trigger as a one-in-five seasons event (z = −0.842) and
evaluated the extent to which indemnity payouts varied between the
zNDVIU

s and the zNDVIU
ps series, taking payouts based on zNDVIU

s as the
reference. In addition, we assessed how sensitive corresponding pay-
ment decisions and amounts were to varying trigger levels.

4. Results

4.1. NDVI-derived start- and end-of-season

Bimodal seasonality is dominant across the study area (90% of
pixels: Fig. 3a). Out of the 131 insurance units, only four units have
more pixels (between 6 and 28%) with identified unimodality as com-
pared to bimodality. These are all small-sized units (b700 km2) located
in Baringo county. In this region, rainfall-based seasonality analyses also
found a complex spatial pattern of uni- and bimodality (Herrmann &
Mohr, 2011). No seasonality was found for 6% of all pixels concentrated
in hyperarid regions around Lake Turkana, i.e. in Turkana and in
Marsabit (Chalbi Desert). These regions were in fact masked due to
their very small NDVI dynamic range.

The long rains growing season extends on average from early April
(Fig. 3b) to early July (Fig. 3c), and the short rains from mid-October
(Fig. 3e) to late January (Fig. 3f). Important deviations from this average
exist. For example, the short rains start earlier (late August, early Sep-
tember) in higher-elevation zones of Baringo, Borana, and Turkana
(Fig. 3e). Another example is the much later end of the long rains
close to the Indian Ocean coast in Garissa (Fig. 3c). The start- and end-
dates and their spatial patterns show reasonable agreement with
other phenological retrievals from coarser-resolution NDVI series
(Meroni et al., 2014; Vrieling et al., 2013), although our current results



Fig. 3. Pixel-based results from the phenological processing of the eMODIS NDVI series. (a) Seasonality based on the Lomb normalized periodogram. (b) Multi-year average SOS for long
rains. (c) Multi-year average EOS for long rains. (d) Legend used for figures b, c, e, and f: the outer circle represents the first 10-day period of eachmonth. (e) Multi-year average SOS for
short rains. (f) Multi-year average EOS for short rains.
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offer more spatial detail and attain spatially-consistent retrievals for
a larger part of the study area. In the absence of ground observations
of vegetation phenological development, detailed validation of our re-
sults (as for example performed by White et al., 2009) is not possible;
however, the seasonality and mean phenology retrieved by the algo-
rithm were judged to be plausible by experts and field technicians at
the International Livestock Research Institute, and are consistent with
the typical seasonal calendars for north-eastern Kenya and southern
Ethiopia from the Famine Early Warning System Network (FEWS-NET,
2015a, 2015b). For clarity, we stress that SOS is estimated here as
the moment when 20% of the local growing amplitude is exceeded. Be-
cause in water-limited conditions vegetation green-up does not start
until after rains have raised soil moisture content needed for plant
growth, rainfall onset can be up to one month ahead of our SOS esti-
mates, depending on precise onset definitions used (Vrieling et al.,
2011, 2013).

4.2. Earlier assessment of forage conditions from season predictability
analysis

The period between SOSU⁎ and EOSU⁎ (Figs. 4a,b,d,e) is on average
slightly longer than for the pixel-based results of Fig. 3, because we ac-
count for variability in the start- and end-of-season using the spatial av-
erage of the pixel-specific temporal standard deviation.We note 1) that
the phenology-derived seasonal window to be used for temporal aver-
aging deviates considerably from the March–September (LRLD), and
October–February (SRSD) used previously in IBLI, and 2) that the sea-
sonal window is not uniform across the study area. For the long rains,
for almost all units, the window falls within the LRLD definition. SOSU⁎
ranges between mid-March and late-April (Fig. 4a), while EOSU⁎ has a
greater spatial heterogeneity, i.e. from mid-June to late-August
(Fig. 4b). For the short rains, we find that SOSU⁎ displays a much larger
spatial variability ranging from mid-August in Baringo and northern
Borana (i.e. before October that is defined as the start for SRSD) to
early November in Marsabit (Fig. 4d). The EOSU⁎ of the short rains
shows less spread, all falling between mid-January and mid-February
(Fig. 4e). Following Eq. (2), we used the SOSU⁎ and EOSU⁎ to create unit-
specific series of zNDVIUs .

Although formost units the SOSU⁎ and EOSU⁎ definitions span a shorter
temporal averagingwindow as compared to the LRLD/SRSD definitions,
EOSU⁎ can be brought further forward in time. Fig. 4c and f depict the
EOSU⁎90 for the long and short rains respectively, i.e. the earliest 10-day
periodwhen 90% of the variance in zNDVIU

s is predicted by zNDVIUps (with
zNDVIU

ps obtained from temporal averaging between SOSU⁎ and EOSU⁎90).
For the long rains, the end of the temporal integration period can be
brought forward to as early as early- or mid-May for counties like
Wajir, up to late-July for other areas (e.g. western Turkana, southern
Garissa; Fig. 4c). In the spatial dimension, EOSU⁎90 is strongly and posi-
tively correlated with EOSU⁎ for the long rains (r= 0.90). The spatial re-
lationship between EOSU⁎ and EOSU⁎90 is less strong for the short rains
(r = 0.52), probably partly due to the smaller EOSU⁎ variability as com-
pared to that of the long rains. The end date of the short-rain temporal



Fig. 4. Spatially-aggregated phenology and predictability results. (a) SOSU⁎ for the long rains. (b) EOSU⁎ for the long rains. (c) EOSU⁎90 for the long rains (earliest 10-day periodwhen zNDVIU
ps

explains at least 90% of the interannual zNDVIUs variability). d) SOSU⁎ for the short rains. (e) EOSU⁎ for the short rains. (f) EOSU⁎90 for the short. The legend is shown more detailed in Fig. 3d.
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integration period can be brought forward to late-November (parts of
Isiolo and Wajir) to mid-January (e.g. southern Baringo; Fig. 4f).

Temporal graphs (Fig. 5) provide a better insight into local dynamics.
For Central Wajir (Fig. 5a) the NDVI temporal profiles show clear bi-
modal seasonality for the median, 15th percentile, and three individual
years. The short rains are on average the seasonwith stronger forage de-
velopment, judging from the largerNDVI values. The clearly-defined dry
seasons are excluded from the phenology-derived temporal integration
period (grey bars). Particularly for the short rains, much of the zNDVIU

s

variability can be explained long (1.5 months) before the EOSU⁎ (black
bars). Wamba (Fig. 5b) is wetter than Central Wajir (larger NDVI
values) and the seasons when forage develops are longer. The NDVI
temporal profile likewise shows clear bimodal seasonality, although
the NDVI increase in August 2007 suggests off-season rainfall. Gomole
(Fig. 5c) is comparable toWamba, themain difference being the shorter
dry period between the long and short rains, resulting in a later EOSU⁎ for
the long rains, and an earlier SOSU⁎ for the short rains. Finally, Kapedo in
the southern tip of Turkana (Fig. 5d) illustrates that some units have
complex seasonal patterns that may not be easily captured by the phe-
nological analysis. For Kapedo, we found bimodal seasonality for the
majority of pixels contained in the unit (50 vs 42% for unimodal, see
also Fig. 3a).While the identified seasonality seems to fit the intermedi-
ate year (2005), the other years do not follow this bimodal pattern. For
2011 three moments of green-up can be identified, the last one starting
in November, i.e. in the middle of the phenology-derived short rainy
season. On the other hand, 2009 shows a complete failure of the short
rains, but an early green-up before the following long rains, i.e. already
in December. The here-defined optimal temporal windows (black bars)
would correctly identify the short rains of 2011 as a good forage season
and 2009 as a poor forage season. However, offering an insurance
contract based on these seasonal parameters would require more field
research in places like southern Turkana and Baringo on what pastoral-
ists see as key moments of the year when lack of rain and/or forage de-
velopment affects their livestock.

IBLI's original forage index, using LRLD and SRSD as integration pe-
riods, can be explained to a varying extent by zNDVIUpswith temporal in-
tegration from SOSU⁎ to EOSU⁎90 (Fig. 6). For many units, the temporal
variability is highly similar for both forage indices; 79% of the units for
the long rains, and 82% for the short rains have a Rcv

2 above 0.75. Partic-
ularly for the unitswith the strongest reduction of integration times, the
Rcv
2 is large (Fig. 6c). This implies that for units with clearly-defined sea-

sonality, incorporation of the dry season for temporal integration adds
little information to the forage scarcity index. In itself, this is good
news for Marsabit and Wajir where IBLI has been active for several
years, because a shift to the new integration periods proposed in this
paper would not result in large discontinuities in expected payouts.
For units where the length of the new integration period is closer to
the original LRLD/SRSD length, the Rcv

2 is often smaller, particularly for
the SRSD season. For the short rains, this is particularly evident in loca-
tions like Baringo County and Kapedo (Fig. 5d) that have strongly devi-
ating season definitions, e.g. in terms of SOSU⁎. We stress, however, that
the LRLD/SRSD integration periods are not our optimal benchmark



Fig. 5. Spatially-aggregated NDVI for: (a) Central Wajir—Wajir, (b) Wamba— Samburu, (c) Gomole— Borana (Ethiopia), and (d) Kapedo— Turkana. The multi-annual median NDVI for
each 10-day is depicted in light green, while dark green shows the 15th percentile. Three individual years are overlaid; the year with the overall largest NDVI during the year (dark blue), a
medium year (cyan), and the year with overall smallest NDVI (red). Grey bars show the SOSU⁎ to EOSU⁎ period, and black bars the SOSU⁎ to EOSU⁎90 period.
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because, as we show, these fixed periods do not account for important
spatial variability of seasonal parameters. Moreover the forage scarcity
index should focus on the moment when forage actually develops.

4.3. Effect of a shortened season on indemnity payouts

Taking all insurance units and seasons together, in more than 92.5%
of the cases the use of the shortened season (zNDVIUps) resulted in the
same binary payout decision as for the reference (zNDVIUs) for any trig-
ger level (Fig. 7a). Small indemnity amounts are the main cause of dis-
agreement given that Type I and II errors decline with increasing
return periods. For example, for a return period of five seasons, 96.5%
Fig. 6. Per-unit Rcv2 that expresses how accurately the temporal variability of the zNDVIU using th
be predicted by zNDVIU

ps; (a) for the long rains, (b) for the short rains. Panel (c) plots the ratio be
against the unit-specific Rcv2 .
of binary payout decisions coincide. Excluding all unit-season combina-
tions forwhich both index series resulted in no payment (dark grey part
of the graph), this corresponds to 71% of all payments falling within a
mere 10% payout difference, and less than 2.5% of all payments had
over 25% difference in indemnity payout amount (Fig. 7b). In absolute
terms, this represents 17 season-unit combinations out of 756 cases in
which at least one series triggered. Setting a longer return period as a
trigger results in fewer payments, of which a bigger share in relative
terms have a large deviation in payout amount between the series. The
zNDVIU

ps series tend to result in larger indemnity payouts than zNDVIU
s ,

especially for larger return periods (Fig. 7b). A possible explanation
could be that the shorter integration times of zNDVIUps capture less of
e original IBLI-definitions of LRLD (March–September) and SRSD (October–February) can
tween the partial season length (EOSU⁎90-SOSU⁎) and the original LRLD/SRSD season length



Fig. 7. Comparison of indemnity payout decisions based on zNDVIU
ps (shortened season) and zNDVIU

s (reference) for various trigger levels, expressed as a return period. (a) Binary payment
decisions for all insurance units and seasons combined (N=3537); type I errors represent occasionswhere theuse of zNDVIUpswouldhave led to a payment and the use of zNDVIUs not (type
II errors vice versa). (b) Percentage difference in payout amounts between both series; only cases where one or both series indicated payment are considered, i.e. excluding the dark grey
area of panel (a). Positive numbers mean that payments according to zNDVIU

ps were larger than those of zNDVIUs .
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the senescence phase, which in general shows smaller NDVI deviations;
therefore its inclusion in zNDVIU

s makes the z-score and hence payout
amounts smaller.

Fig. 8 provides a spatial overview of the main differences in indem-
nity payout decision and amount, based on a one-in-five season trigger
and one-in-hundred season exit level. Although spatial differences
occur, on average only 0.95 time per unit payment was triggered in ei-
ther the zNDVIU

s or the zNDVIU
ps series, but not for both simultaneously

(Fig. 8a). The largest deviation occurred in Loima (Turkana), where for
seven seasons the series did not coincide; we found that this was due
to small indemnities of on average 3.7%.

Rather than spatially comparing pay vs. no-pay decisions that rely
only on a single threshold (i.e. trigger level), differences in indemnity
amounts are also relevant. We mapped these using the mean absolute
error (MAE; Fig. 8b) and the mean signed deviation (MSD; Fig. 8c) cal-
culated after removing corresponding no-pay seasons for each unit.
More than 76% of all units have an MAE less than 10%, indicating a
close correspondence of payout amounts. Four of the 131 units (i.e.
3%) have an MAE greater than 15%, all located in Baringo. This larger
MAE is likely a result of the more complex seasonality patterns in this
region,whereby the 90%-level predictability of zNDVIUs based on zNDVIU

ps

did not guarantee a close match of the poor seasons experienced in this
county. These deviations were particularly large for the 2009 long and
short seasons when June throughout December showed very small
NDVI values: the shortened season excluded part of the small July/
Fig. 8. Comparison of insurance payout decisions based on zNDVIU
ps and zNDVIU

s (reference) fo
(z=−2.326). (a) Number of seasons with type I or type II errors (n= 27). (b) Mean absolute
viation (MSD). For panel (b) and (c) all seasons when both series resulted in no-pay decisions
August values (resulting in less negative z-scores) and partially exclud-
ed the out-of-season green-up the following January/February
(resulting in more negative z-scores). This underlines the difficulty of
defining good seasonal parameters in spatially and temporally complex
areas like Baringo. The averageMSD across the study area is 1.0, where-
as none of the units have an absolute MSD greater than 8.8 (Fig. 8c).
Overall, our results show that differences in binary payout decisions
and indemnity amounts between both series are small.

5. Discussion

5.1. Defining the forage production season

Seasonality of rainfall and vegetation growth is location-dependent.
This study showed that while the original IBLI seasonal definitions pro-
vide a reasonable separation of the twomain seasons formost insurance
units considered, important differences exist between units. Moreover,
IBLI originally incorporated the dry season when defining the seasonal
forage scarcity index because forage availability during that season is
important for feeding livestock. Nonetheless, available forage during
the dry season is generally not photosynthetically-active, hence NDVI
does not detect this. For this reason, in this study we rather focus on
the period when forage actually develops, as defined by SOS and EOS
obtained from phenological analysis. The availability of forage in the
dry season should nonetheless be a function of forage production during
r a trigger level of one in five seasons (z = −0.842) and an exit level of one in hundred
error (MAE) expressed in percentage indemnity pay. (c) Corresponding mean signed de-
for the respective unit were excluded from the calculation.
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the preceding rainy season. Although in this studywe lackmulti-season
field data on forage biomass across the large spatial extent covered,
other studies have demonstrated that the temporal integration of vege-
tation indices over the growing season strongly relates to the
vegetation's seasonal biomass productivity (Jung et al., 2008; Rigge,
Smart, Wylie, Gilmanov, & Johnson, 2013) or derivatives like crop
yield (Funk & Budde, 2009; Meroni, Marinho, Sghaier, Verstrate, & Leo,
2013). For that reason, we have a high level of confidence that a forage
scarcity index based on seasons derived fromphenological analysis pro-
vide a better measure of forage scarcity as compared to the former
LRLD/SRSD definitions.

Our study concentrated on bimodal seasonality, because of its dom-
inance across the study area (Fig. 3c). For regionswith unimodal rainfall,
the insurance schememay be adapted to have a single payout moment,
and hence forage scarcity index, during the year. For example, this
would be more suited for the pastoralist Karamoja region in north-
eastern Uganda (data not shown). Without considering the dry regions
with no seasonality, we observed complex seasonality patterns for
Baringo and southern Turkana (Fig. 3c). Althoughwe now forced bimo-
dality on these regions, it is apparent that both the complex patterns
and the interannual shifts in seasonality (Fig. 5d) provide a continuing
challenge for effectively offering an insurance product that would re-
spond to pastoralists' needs. This was also illustrated by the relatively
larger deviations in indemnity payout amounts in Baringo between
zNDVIU

s and zNDVIU
ps series (Fig. 8b) predominantly resulting from an ab-

normal NDVI temporal development in 2009.
It is important to point out that despite our effective and spatially-

consistent estimates of SOS and EOS, a small error may be introduced
because the actual NDVI observation dates were not known (Thayn &
Price, 2008) and consequently we used the central date for each 10-
day composite. For the maximum-value NDVI composites used here
(Section 2), it is likely that the composites used on average later dates
for the green-up phase and earlier dates for the senescence phase. Not
accounting for this would on average advance the SOS, and delay EOS.
Whereas some NDVI products (e.g. MODIS V005) contain the per-
pixel observation date for each composite, for eMODIS this is not the
case. To evaluate the potential effect of this, we also applied the exact
methods described in Section 3.1 to 1 km-resolution 10-day SPOT VEG-
ETATION time series (as described in Meroni et al., 2014) for which ob-
servation dates are known andwere used.We did indeed find that SOSU⁎
was on average about 6 days earlier and EOSU⁎ 2 days later for eMODIS
with respect to VEGETATION. The shift is within the 10-day sampling
period and the sign of this difference is in agreement with the explana-
tion provided above. We nonetheless decided to consistently use
eMODIS in our study, given that it is the operational NDVI product
now used in IBLI, and we consider the slight difference within accept-
able limits.

5.2. Operational implementation of reduced seasonal integration times

This study showed that formost areas seasonal integration times can
be substantially shortened as compared to the original LRLD and SRSD
temporal definitions. Implementing the seasonal definitions (SOSU⁎ to
EOSU⁎90) in the IBLI insurance scheme would allow payments to be
made earlier thanwas previously possible and thus provide pastoralists
with financial resources to protect their animals from loss (Zwaagstra
et al., 2010); this represents amore cost-effective and less disruptive al-
ternative to post-mortality replacement. We note however that for sev-
eral parts of the study area markets to purchase key commodities, like
fodder, water, and medicine, need further development in order to
fully exploit insurance as an effective animal protection mechanism
(Lukuyu, Franzel, Ongadi, & Duncan, 2011).

The unit-specific SOSU⁎ to EOSU⁎90 found in this paper could be applied
more loosely to satisfy other operational considerations. For example,
for a single county uniform start- and end-dates may be chosen that
roughly respect the unit-specific definitions. In fact, the here-applied
90% threshold on the index predictability to determine EOSU⁎90 dates is
somewhat arbitrary. A slightly smaller threshold may still qualify as a
high prediction power, and explaining more than 90% is obviously ac-
ceptable as well. We demonstrated that the shortened season (using
EOSU⁎90 instead of EOSU⁎) resulted formost insurance units in similar pay-
out structures with overall small MAE and MSD values.

Early payout in case of drought conditions requires rapid calculation
of the forage scarcity index zNDVIUps, i.e. shortly after theNDVI composite
for EOSU⁎90 becomes available. Currently, USGS provides eMODIS com-
posites approximately two to three days after the end of a 10-day peri-
od. For example, the NDVI composite for 1–10 June will be available on
13 June. Nonetheless, temporal filtering of the composite is then still
necessary to reduce remaining cloud contamination (Section 2). Given
that the used filter requires three 10-day periods before and after the
period under consideration, an additional month of NDVI data is re-
quired. So for the example, the filtered NDVI composite for 1–10 June
is available on 13 July. This implies that the final index can be obtained
one month and three days after the here-reported EOSU⁎90 dates. Even
when accounting for delays, achievable payout dates based on filtered
NDVI data up to EOSU⁎90 are for most areas still much earlier than the
end dates of IBLI's original LRLD and SRSD integration times.

5.3. Challenges and future outlook

Despite that large parts of the study area show clearly-separated
seasons, this is not the case everywhere. Very arid landscapes (deserts)
lack seasonality due to the small NDVI dynamic range (Fig. 3a), while for
other areas timing of rainfall and resulting greenness varies substantial-
ly between years (Fig. 5d). It is yet unclear how effective an insurance
scheme based on fixed seasonal definitions may be for such areas. Fur-
ther field study iswarranted to better understand how andwhen pasto-
ralists are affected by weather and consequent forage conditions of key
grazing areas in places like Kapedo (Turkana) and elsewhere where
NDVI seasonality strongly varies between years. Offering an insurance
product that does not respond to pastoralists' expectations signifies a
large risk on the sustainability of the product.

An insurance scheme is only viable if it convincingly covers what it
aims to cover, i.e. the scheme has a low basis risk (Miranda & Farrin,
2012). To evaluate if low basis risk can be attained, possibly for a variety
of alternative forage scarcity indices, validation is needed. In the coming
years, the IBLI project intends to put substantial effort in validation and
evaluation of alternative indices. Potential validation data sources can
be split into four groups:

1) Long-term field observations of forage availability, such as plot-level
forage biomass measurements (e.g. Roumiguié et al., 2015), time-
lapse photography of forage condition (Inoue, Nagai, Kobayashi, &
Koizumi, 2015; Migliavacca et al., 2011), or crowdsourcing ap-
proaches for the collection of forage condition information by pasto-
ralists using mobile phones.

2) Household-level time series data on drought-outcome parameters
like livestock mortality or the mid-upper arm circumference
(MUAC), which for children indicates their nutritional status. Such
data have been collected atmonthly intervals by the Kenyangovern-
ment from 1996 onwards in the framework of the Arid Land Re-
source Management Project (ALRMP; Chantarat et al., 2013) and
currently by Kenya's National Drought Monitoring Authority
(NDMA).

3) Drought recall exercises that exploit pastoralists' experiences to rank
forage conditions across multiple seasons.

4) Alternative drought measurements such as long-term rainfall mea-
surements fromweather stations (Tapiador et al., 2012) and dendro-
chronological data (Gebrekirstos, Bräuning, Sass-Klassen, & Mbow,
2014; Wils et al., 2011).

Irrespective of validation, we can envisage further improvements of
the forage scarcity index, whichwere discussed in Vrieling et al. (2014).
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Among them, the spatial aggregation step could be improved byonly in-
corporating pixels that constitute the key forage areas within each unit,
rather than just discarding pixels with no-seasonality as we do current-
ly. However, mapping these for large extents is not straightforward and
would require pastoralists' input or alternative ways to track herd
movements and pastoralists' use of their environment. Movements
may also take place outside the spatial unit for which pastoralists
purchased insurance, particularly during drought. Although the
units used here attempt to cover the rangeland normally utilized
by households residing in the unit (following interactionswith local ex-
tension officers), rangeland use may be different in dry years. Nonethe-
less, we note that long-distance migration equally puts energetic
demands on livestock thus negatively affecting their condition. This
fact may support the idea that forage scarcity in the proper unit
is a valid index, even if the pastoralist's herd does not continuously re-
side in the unit. In addition, given that drought is a covariate risk,
neighbouring units are often likewise affected. Without repeating all
potential index enhancements described in Vrieling et al. (2014), we
argue that scope exists for further improving the forage scarcity index
and that 1) validation data, in combination with 2) improved under-
standing of pastoralists' practices in relation to varying forage condi-
tions are key to achieve that.

6. Conclusions

This study demonstrated howphenological analysis of NDVI time se-
ries can be used to obtain a location-specific estimate of season start-
and end-dates.We showed how these seasonal estimates could improve
IBLI's forage scarcity index by incorporating only NDVI data for the peri-
od when forage is developing, while discarding the dry season. Further-
more, we found that end-of-season index variability could be accurately
predicted when bringing forward season end-dates further in time.
Using this shortened seasonal definition resulted in relatively small de-
viations in indemnity payout timing and amount throughout the study
area. Our approach comprising an analysis of seasonality and index pre-
dictability could be replicated in other regions where index insurance
programmes are envisaged that aim at covering shortfalls in vegetation
primary productivity due to drought. The earlier assessment of the sea-
sonal forage scarcity index identified in this study allows for earlier pay-
outs and hence options for pastoralists to protect rather than replace
their livestock. In case of drought conditions, the original IBLI approach
made payments in March for the short rains and in October for the
long rains. Our here-recommended season parameters allow for paying
out in January/February (short rains) and July/August (long rains). These
dates are already accounting for one month needed for temporal filter-
ing of the NDVI series to suppress atmospheric effects in the data. The
seasonal estimates are location-dependent; while many spatial units
show the same clearly-separated seasons every year, we found that
other units (predominantly in Baringo and Turkana) display less-
constant seasonality patterns. The spatial and temporal variability of
NDVI seasonality in these more variable units poses continuing chal-
lenges for insurance design and delivery, as here we find the largest de-
viations between the original andnewly-proposed forage scarcity index.

Continued efforts are needed for validating the here-proposed forage
scarcity index and possible alternatives within the study area, and in
other areas where livestock and forage insurance programmes may ex-
pand to. Such efforts require collaborative research with pastoralist
groups who are or may become beneficiaries of these programmes in a
joint attempt to reduce basis risk and provide a well-understood
valuable product thatmay further enhance livelihoods of pastoral house-
holds in regionswhere resource variability strongly affects food security.
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