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Abstract: Basis risk – the remaining risk that an insured individual faces – is widely 

acknowledged as the Achilles Heel of index insurance, but to date there has been no direct 

study of its role in determining demand for index insurance. Further, spatiotemporal 

variation leaves open the possibility of adverse selection. We use rich longitudinal 

household data from northern Kenya to determine which factors affect demand for index 

based livestock insurance (IBLI). We find that both price and the non-price factors studied 

previously are indeed important, but that basis risk and spatiotemporal adverse selection 

play a major role in demand for IBLI.  

 

 

 

 

 

 

 

JEL CODES: D81, O16, Q12 

*Jensen: Dyson School of Applied Economics and Management, Cornell University, 320J Warren Hall, Ithaca, NY, 14850 (e-mail: 

ndj6@cornell.edu); Mude: International Livestock Research Institute, Nairobi, Kenya (e-mail: A.MUDE@cgiar.org); Barrett: Dyson School of 

Applied Economics and Management, Cornell University, 210B Warren Hall, Ithaca, NY,14850 (e-mail: cbb2@cornell.edu). This research uses 

data collected by a collaborative project of the International Livestock Research Institute, Cornell University, Syracuse University and the BASIS 

Research Program at the University of California at Davis. The authors wish to specifically thank Diba Galgallo, Munenobu Ikegami, Samuel 

Mburu, Oscar Naibei, Mohamed Shibia and Megan Sheahan for their remarkable efforts to collect useful and accurate data. This project was 

made possible, in part,  by the generous funding of the UK Department for International Development (DfID), the Australian Department of 

Foreign Affairs and Trade and the Agriculture and Rural Development Sector of the European Union through DfID accountable grant agreement 

No: 202619-101, DfID through FSD Trust Grant SWD/Weather/43/2009, the United States Agency for International Development grant No: 

EDH-A-00-06-0003-00, the World Bank’s Trust Fund for Environmentally and Socially Sustainable Development Grant No: 7156906, and the 

CGIAR Research Programs on Climate Change, Agriculture and Food Security and Dryland Systems.. This paper represents the views of its 

authors alone and not the positions of any supporting organizations. Any remaining errors are our sole responsibility.

mailto:A.MUDE@cgiar.org
mailto:cbb2@cornell.edu


1  

 

I. Introduction 

Risk management interventions have become a priority for development agencies as the enormous cost 

of uninsured risk exposure, especially to the rural poor, has become increasingly widely appreciated. 

Improved risk management through innovative insurance products is hypothesized to crowd in credit 

access, induce investment, support informal social transfers, and generally stimulate growth and poverty 

reduction (Hess et al. 2005; Skees, Hartell & Hao 2006; Barrett et al. 2007; Barnett, Barrett & Skees 2008; 

Boucher, Carter & Guirkinger 2008; Skees & Collier 2008; Giné & Yang 2009; Hellmuth et al. 2009; 

Karlan et al. 2014). Although insurance products offer a proven means to manage risk through formal 

financial markets, asymmetric information problems—adverse selection and moral hazard—and high 

fixed costs per unit insured effectively preclude conventional indemnity insurance for smallholder crop 

and livestock farmers in developing countries.  

Index insurance products have flourished over the past decade as a promising approach to address these 

obstacles. Index insurance products use easily observed, exogenous signals to provide coverage for 

covariate risk. Anchoring indemnity payments to external indicators, not policyholder’s realized losses, 

eliminates the need to verify claims, which is particularly costly in remote areas with poor infrastructure 

and clients with modest covered assets, and mitigates the familiar incentive challenges associated with 

moral hazard and adverse selection that plague traditional insurance. These gains do come at the cost, 

however, of “basis risk”, defined as the residual risk born by insurees due to the imperfect association 

between experienced losses and indemnification based on index values. Furthermore, a form of adverse 

selection may remain if prospective purchasers have information about upcoming conditions that affect 

insured, covariate risk – such as climate forecasts – but that information is not incorporated into the index 

insurance product’s pricing (Carriquiry & Osgood 2012). 

The explosion of interest in index insurance has resulted in a proliferation of pilot programs across the 

developing world. A burgeoning literature addresses various aspects of theoretical and applied concerns 

in the design, implementation, and assessment of index insurance products (Barnett & Mahul 2007; 

Barrett et al.2007; Binswanger-Mkhize 2012; Chantarat et al. 2007; Clarke 2011; Miranda & Farrin 2012). 

Despite the celebrated promise of index insurance, uptake in pilot programs around the globe has been 

generally low, and there are as of yet no examples of clear success stories with demonstrable capacity for 

scalability or sustainability over the long run (Smith & Watts 2010; Hazell & Hess 2010; Leblois & 

Quiron 2010). As a result, most empirical research on index insurance in developing countries has 

focused on identifying the barriers to insurance uptake. Although demand appears to be price sensitive, as 

expected, studies find considerable variation in the price elasticity of demand, ranging from -0.44 to -1.16 

(Mobarak & Rosenzweig 2012; Cole et al. 2013; Hill, Robles & Ceballos 2013). And, with the exception 
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of the Ghanaian farmers studied by Karlan et al. (2014), uptake has been low even at heavily subsidized 

prices.
1
 With evidence that price plays only a small part in determining demand, researchers have turned 

to examining the role of household-specific non-price factors. Risk aversion, wealth, financial liquidity, 

understanding of the product, trust in the provider, and access to informal risk pooling commonly exhibit 

significant, although sometimes inconsistent, impacts on demand (Giné, Townsend & Vickery 2008; 

Chantarat, Mude & Barrett 2009; Pratt, Suarez & Hess 2010; Cai, de Janvry & Sadoulet 2011; Clarke 

2011; Janzen, Carter & Ikegami 2012; Liu & Myers 2012; Mobarak & Rosenzweig 2012; Cole et al. 2013; 

McIntosh, Sarris, & Papadopoulos 2013; Dercon et al. 2014).  

Although basis risk and the possibility of spatiotemporal adverse selection are widely understood as 

prospective weaknesses of index insurance, the empirical research has thus far not directly explored the 

role that either of these product-specific factors plays in influencing product uptake. But if the insurance 

index is imperfectly correlated with the stochastic welfare variable of interest (e.g., income, assets), then 

index insurance may offer limited risk management value; indeed it can increase, rather than decrease, 

purchasers’ risk exposure (Jensen, Barret & Mude 2014a). Furthermore, prospective purchasers may 

perceive that an index insurance product is mispriced for their specific location or for the upcoming 

season, given information they have on covariate risk for the insured period and place.  

Both of these problems exist generally in index insurance contracts and either might adversely affect 

uptake. Yet the impact of these prospective weaknesses in index insurance products has not been carefully 

researched to date, although a few studies use coarse proxies for idiosyncratic risk (Karlan et al. 2014; 

Mobarak & Rosenzweig 2012). This lacuna arises primarily because the vast majority of products fielded 

to date remain unable to determine the level of basis risk inherent in their product design; the products 

were designed from data series on index variables (e.g., rainfall, crop growth model predictions), not from 

longitudinal household asset or income data from the target population to be insured. 

This paper fills that important gap, exploiting an unusually rich longitudinal dataset from northern 

Kenya and the randomization of inducements to purchase index-based livestock insurance (IBLI), a 

product designed from household data to minimize basis risk (Chantarat et al. 2013), in order to identify 

the impact of basis risk and spatiotemporal adverse selection on index insurance uptake. We further 

distinguish between the two central components of basis risk, design error – associated with the imperfect 

match between the index and the covariate risk the index is meant to match – and idiosyncratic risk – 

individual variation around the covariate experience. Design error can be reduced by improving the 

                                                      

1 
The high demand for rainfall insurance in Ghana is somewhat of a mystery.  Karlan et al. (2014) point to the role that insurance grants and 

indemnity payments play, but those same processes have been observed elsewhere unaccompanied by similar levels of demand.  
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accuracy of the index, while idiosyncratic risk inherently falls outside the scope of index insurance 

policies.  

Echoing the prior literature, we find that price, liquidity, and social connectedness affect demand in the 

expected ways. In addition, we find that basis risk and spatial adverse selection associated with division 

average basis risk dampen demand for IBLI. Households in divisions with greater average idiosyncratic 

risk are much less likely to purchase insurance than those in divisions with relativity more covariate risk. 

Design error also plays a role in demand, reducing uptake and increasing price sensitivity among those 

who purchase coverage. But between the two components of basis risk, design risk plays a much smaller 

role, reducing uptake by an average of less than 1% (average marginal effect [AME] =-0.0073, Std. Err.= 

0.0025) while the division average covariance between individual and covariate losses effects uptake by 

nearly 30% on average (AME = 0.2964, Std. Err.=0.1617). Consequently the basis risk problem is not 

easily overcome through improved product design. There is also strong evidence of intertemporal adverse 

selection as households purchase less coverage, conditional on purchasing, before seasons for which they 

expect good conditions (AME=-0.2709, Std. Err.=0.0946). This impact represents an 11.2% reduction in 

average demand among those purchasing. 

The remainder of the paper is organized as follows. Section 2 discusses risk among pastoralists in 

northern Kenya and the motivation for and design of the IBLI product offered to them. Section 3 develops 

a stylized model of livestock ownership and the role of insurance so as to understand the structural 

determinants of demand. Section 4 presents the research design and data, followed by an explanation and 

summary of key variables in Section 5. Section 6 describes the econometric strategy used to analyze 

demand for IBLI. The results are discussed in Section 7. 

II. Drought-Related Livestock Mortality & Index Insurance in Kenya  

A first order concern in the design of an optimal insurance index is that it significantly reduces risk 

borne by the target population and that the index covaries strongly with observed losses. The IBLI 

product expressly covers predicted area average livestock mortality that arises due to severe forage 

shortages associated with drought, precisely because drought-related livestock mortality has consistently 

emerged as the greatest risk faced by pastoralists in the arid and semi-arid lands (ASAL) of the Horn of 

Africa (McPeak & Barrett 2001; McPeak, Little & Doss 2012, Barrett & Santos 2014).  

Livestock not only represent the principal source of income across most ASAL households (mean=69% 

and median=95% in our data) but also constitute the highest value productive asset they own. Livestock 

face considerable mortality risk, rendering ASAL households particularly vulnerable to herd mortality 

shocks. Among these, drought is by far the greatest cause of mortality, and drought-related deaths largely 

occur in times of severe forage shortages. For example, between June 2000 and June 2002, surveyed 
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pastoralists reported that drought-related factors accounted for 53% of the livestock deaths that they 

experienced, and disease, which is often associated with droughts, caused an additional 30% mortality 

during that period (McPeak, Little & Doss 2012). Drought is the cause of 62% of the reported livestock 

mortality in our 2009-12 sample from northern Kenya. Droughts represent a covariate risk that may be 

especially difficult for existing social risk pooling schemes to handle because losses can impact all 

members of the risk pool. Thus, the seemingly largely covariate risk profile pastoralists face seems well-

suited for coverage by an index product. 

Launched as a commercial pilot in January 2010 in the arid and semi-arid Marsabit District to address 

the challenge of drought-related livestock mortality, the index based livestock insurance (IBLI) product is 

derived from the Normalized Difference Vegetation Index (NDVI), an indicator of photosynthetic activity 

in observed vegetation as reflected in spectral data remotely sensed from satellite platforms at high 

spatiotemporal resolution (Chantarat et al. 2013). These NDVI data are reliably and cheaply accessible in 

near real-time, and with a sufficiently long historical record to allow for accurate pricing of the IBLI 

product (Chantarat et al. 2013). The statistical relationship between NDVI and livestock mortality was 

estimated using historic household level livestock mortality rates and NDVI values from January 2000 

through January 2008 and then tested out-of-sample against a different set of seasonal household panel 

data collected 2000-2 in the same region.
2
 The resulting response function generates estimates of division 

average livestock mortality rate.
3
 IBLI appears to be the only index insurance product currently on the 

market that was developed using longitudinal household data so as to minimize the design component of 

basis risk.
4
  

A commercial underwriter offers IBLI contracts written on this predicted livestock mortality rate index 

(see Chantarat et al. 2013 for more details on data and product design). The index is calculated separately 

for each of the five administrative divisions in Marsabit, allowing for variation between divisions.  The 

commercial underwriter set a single strike level—the index level above which indemnity payments are 

made—at 15% predicted livestock mortality and aggregated the five index divisions into two premium 

regions.  Notably, the aggregation of index divisions into premium regions results in variation in 

                                                      

2
 Monthly household-level livestock mortality data were collected by the Arid Lands Resource Management Project (ALRMP, 

http://www.aridland.go.ke/). The seasonal household panel data used for out-of-sample evaluation come from the Pastoral Risk Management 

project (http://dyson.cornell.edu/special_programs/AFSNRM/Parima/projectdata.htm).  
3 

“Divisions” are existing administrative units in Kenya that define the geographic boundaries of the IBLI contract. Division boundaries are 

suitable because they are large enough to reduce moral hazard to a negligible level, small enough to capture a large portion of covariate risk, and 
are well known by pastoralists.  

4
 An index based livestock insurance program in Mongolia, which protects pastoralists from the risk of severe winters known as dzud, seems 

to have been designed off area average herd mortality rates (see Mahul & Skees 2007 for a full description of the IBLI Mongolia project). As of 

writing, the Mongolian program has yet to make its findings public so we are unable to use the similarities between programs to inform this 
research. 

http://www.aridland.go.ke/
http://dyson.cornell.edu/special_programs/AFSNRM/Parima/projectdata.htm
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loadings/subsidies between index divisions, opening the door for spatial adverse selection.
5
  A detailed 

summary of the contract parameters (e.g., geographical segmentation of coverage, temporal coverage of 

the contract, conditions for contract activation, indemnification schedule, pricing structure) is presented in 

Appendix A. 

During the first sales season in January 2010, 1,974 policies were sold covering the long rain/long dry 

season of 2010 (LRLD10) and following short rain/short dry season (SRSD10), from March 1, 2010-

Ferburary 28, 2011. The intention was to have a sales window during the two-month period before the 

onset of each bimodal rainy season. Due to logistical and contractual complications, IBLI was not 

available for purchase during the August/September 2010 or January/February 2012 periods. In total, 

there have been four sales windows and six seasons of coverage during the timeframe considered in this 

paper. Table 1 presents summary statistics for IBLI sales over the four rounds that fall within our sample 

period.  

There was a consistent fall in IBLI uptake over the 2010-2012 period. Although inconsistency of sales 

windows, a change in the commercial insurance provider, and variation in extension and sales protocols 

may have depressed sales, heterogeneity in demand suggests that other factors also influenced purchases. 

Tracking household purchase patterns across seasons shows considerable variation in when households 

make their first purchase, if they continue to purchase, or if they allow their contract to lapse (Table 2). 

Such behavior suggests dynamic factors play a significant role in insurance demand. In the next section, 

we offer a simple model of index insurance demand and examine the role that basis risk and 

spatiotemporal adverse selection could play in determining demand. 

III. Demand for Index Based Livestock Insurance 

This section sets up a simple model of household demand for insurance that offers a set of empirically 

testable hypothesis concerning basis risk and spatiotemporal adverse selection. This is meant merely to 

motivate the empirical exploration that is this paper’s primary contribution. So we simplify this as a static 

problem under uncertainty and ignore dynamic considerations in the interests of brevity. 

Let households maximize their expected utility, which is an increasing and concave von Neumann-

Morgenstern function that satisfies U’>0, U’’<0. Utility is defined over wealth, measured as end-of-

period herd size expressed in tropical livestock units (TLU).
6
 Households have an initial livestock 

endowment,TLU0, but the herd is subject to stochastic losses (L). Households have the option of 

                                                      

5
 The aggregation of index divisions into premium regions had been dropped in the newer IBLI products introduced in 2013. 

6
 Tropical livestock units (TLUs) are a conversion rate used to aggregate livestock.  The IBLI contracts use the conversion rate of 1 TLU = 

0.7 camels = 1 cattle = 10 sheep or goats as suggested by the FAO Livestock and Environment Toolbox (1999). 
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purchasing livestock insurance at the rate of 𝑝  per animal insured (𝑡𝑙�̃�)  where 𝑡𝑙�̃�  is in TLUs and 

𝑝 ∈ [0,1].7 The insurance makes indemnity payments according to an index, which is the predicted rate of 

division average livestock losses (𝐼 ∈ [0,1]).
8
 The utility maximization problem and budget constraint can 

be described as follows, where E is the expectation operator; 

 

(1) max
𝑡𝑙�̃�

𝐸[𝑈(𝑇𝐿𝑈)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑇𝐿𝑈 = 𝑇𝐿𝑈0 − 𝐿 − 𝑡𝑙�̃� ∗ 𝑝 + 𝑡𝑙�̃� ∗ 𝐼 

 

Normalize the variables 𝑇𝐿𝑈, 𝑇𝐿𝑈0, 𝐿, 𝑡𝑙�̃� by 𝑇𝐿𝑈0 so that they are now all expressed as proportions of 

the household’s initial herd endowment. Substituting the budget constraint into the utility function and 

using a second order Taylor expansion allows us to approximate the expected utility maximization 

problem as a function of original livestock endowment and deviations from the endowment associated 

with losses, premium payments and indemnity payments.
9
 The necessary first order condition becomes 

 

(2) 𝐸 [𝑈′(𝑇𝐿𝑈0)(−𝑝 + 𝐼) + 𝑈′′(𝑇𝐿𝑈0)[𝐿𝑝 − 𝐿 ∗ 𝐼 + 𝑡𝑙�̃� ∗ 𝑝2 − 2𝑝 ∗ 𝐼 ∗ 𝑡𝑙�̃� + 𝑡𝑙�̃� ∗ 𝐼2]] = 0 

 

The first order condition can be solved for optimal insurance purchases. We use the representations 

𝐸[𝑥] = �̅� , 𝐶𝑜𝑣(𝑥, 𝑦) = the covariance of 𝑥  and  𝑦 , and 𝑉𝑎𝑟(𝑥)  = variance of  𝑥 , where 𝑥  and 𝑦  are 

representative variables. In addition, we use U=U(TLU0) to simplify notation. With some algebra, the 

optimal number of animals to ensure can be written as equation (3). 

 

(3) 
𝑡𝑙�̃�∗ =

𝑈′′[�̅�(𝐼 ̅ − 𝑝) + 𝐶𝑜𝑣(𝐼, 𝐿)] − 𝑈′(𝐼 ̅ − 𝑝 )

𝑈′′((𝐼 ̅ − 𝑝)2 + 𝑉𝑎𝑟(𝐼))
 

 

If premiums are actuarially fairly priced, then the premium rate is equal to the expected index value 

(𝐼 ̅ = 𝑝). In that case, optimal coverage is 𝑡𝑙�̃�∗ =
𝐶𝑜𝑣(𝐼,𝐿)

𝑉𝑎𝑟(𝐼)
, which is greater than zero as long as the 

covariance between the index and losses is positive and equal to one if an individual’s losses are identical 

                                                      

7
 The premium and index are defined as ratio to avoid the need to place a monetary value on livestock. This specification is appropriate in the 

context of livestock insurance in northern Kenya because households often sell off a small animal in order to purchase insurance on remaining 
animals. If the cost of insuring one animal was equivalent to the value of the animal, p=1. 

8 
The division refers to the geographic region defined by the insurance product.   

9
 max𝑡𝑙�̃� 𝐸 [𝑈(𝑇𝐿𝑈0) + 𝑈′(𝑇𝐿𝑈0)(−𝐿 − 𝑡𝑙�̃� ∗ 𝑝 + 𝑡𝑙�̃� ∗ 𝐼) +

1

2
𝑈′′(𝑇𝐿𝑈0)(−𝐿 − 𝑡𝑙�̃� ∗ 𝑝 + 𝑡𝑙�̃� ∗ 𝐼)

2
] 
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to the index. If the insurer adds loadings to the policy premium so that 𝐼 ̅ < 𝑝, then optimal insurance 

purchase volumes can be zero even when the index is positively correlated with household losses.  

A. Basis risk 

If there is no basis risk (𝑐𝑜𝑣(𝐼, 𝐿) = 𝑉𝑎𝑟(𝐼)) and the premiums remain actually fair, then the index and 

losses are identical and 𝑡𝑙�̃�∗ = 1, i.e., full insurance is optimal. As the covariance between the index and 

individual losses falls, however, so does optimal coverage (
𝑑 𝑡𝑙�̃�∗

𝑑𝐶𝑜𝑣(𝐼,𝐿)
=

1

𝑉𝑎𝑟(𝐼)
> 0).  

To more closely examine the role that basis risk plays, let the index equal individual losses multiplied 

by a coefficient, a constant, and a random error term ( 𝐼 = 𝛽0 + 𝛽1𝐿 + 𝜀 ). The expected difference 

between the index and losses (expected basis error) is captured by the relationship 𝛽0 + 𝛽1𝐿, in particular 

deviations from the null 𝛽0 = 0 and 𝛽1 = 1, while 𝑉𝑎𝑟(𝜀) is the variance in basis error.  

Because the covariance between the error term and losses is zero by construction, optimal coverage for 

actuarially fairly priced index insurance with basis risk is 𝑡𝑙�̃�∗ =
𝛽1𝑉𝑎𝑟(𝐿)

𝛽1𝑉𝑎𝑟(𝐿)+𝑉𝑎𝑟(𝜀)
. Clearly, as the variance 

in basis error increases, demand falls. Alternatively, as 𝛽1 increases so does demand as long as there is 

some variance in basis error (𝑉𝑎𝑟(𝜀) ≠ 0).
10

 At actuarially fair premium rates with no variance in basis 

error, households can adjust their purchase levels to account for expected basis error at no change to 

expected net costs, and full coverage continues to be optimal. 

Relaxing the premium constraint, let premiums be set so that 𝑝 + 𝛿 = 𝐸[𝐼], where 𝛿 represents the net 

loading on the policy. Thus, if there is a net subsidy, 𝛿 > 0, while if the premiums are loaded beyond the 

subsidy, 𝛿 < 0. Optimal coverage is not monotonic in premium rates because changes to premium rates 

not only effect the opportunity cost of premium payments but also have wealth effects that are ambiguous 

in their impact on demand, 
𝜕𝑡𝑙�̃�∗

𝜕𝛿
=

{𝑈′′�̅�−𝑈′}

𝐷
−

2𝛿𝑈′′{𝑈′′[�̅�(𝛿)+𝛽1𝑉𝑎𝑟(𝐿)]−𝑈′(𝛿 )}

𝐷2 . Clarke (2011) discusses a similar 

outcome.  

Adjusting the earlier model with basis risk to allow for variation in premium rates, optimal coverage is 

now  𝑡𝑙�̃�∗ =
𝑈′′[�̅�(𝛿)+𝛽1𝑉𝑎𝑟(𝐿)]−𝑈′(𝛿 )

[𝑈′′((𝛿)2+𝛽1𝑉𝑎𝑟(𝐿)+𝑉𝑎𝑟(𝜀))]
 and demand still falls with increased variance in basis error.

11
 The 

importance of basis risk might also change with prices. Analytically, we find that demand response to 

basis risk changes with premium rates but is also subject to the ambiguous wealth effects; 

                                                      

10
 
𝑑𝑡𝑙�̃�

𝑑𝛽
=

𝑣𝑎𝑟(𝐿)∗𝑉𝑎𝑟(𝜀)

(𝛽1𝑉𝑎𝑟(𝐿)+𝑉𝑎𝑟(𝜀))
2 ≥ 0.  There is a discontinuity in demand where 𝛽1 = −

𝑉𝑎𝑟(𝜀)

𝑉𝑎𝑟(𝐿)
 but demand is increasing with  𝛽1 on either side of 

the discontinuity. 
11

  
𝜕𝑡𝑙�̃�∗

𝜕𝑣𝑎𝑟(𝜀)
= −

𝑈′′{𝑈′′[�̅�(𝛿)+𝛽1𝑉𝑎𝑟(𝐿)]−𝑈′(𝛿 )}

𝐷2
≤ 0 
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(4) 𝜕2𝑡𝑙�̃�∗

𝜕𝑝𝜕𝑉𝑎𝑟(𝜀)
=

𝑈′′(𝑈′ − 𝑈′′�̅�)

𝐷2
+

4𝑈′′2
𝛿𝑁

𝐷3
≤ 0 

 

where 𝐷 = 𝑈′′[𝛿2 + 𝛽1𝑉𝑎𝑟(𝐿) + 𝑉𝑎𝑟(𝜀)] and 𝑁 = 𝑈′′[𝐿𝛿 + 𝛽1𝑉𝑎𝑟(𝐿)] − 𝑈′𝛿. This leads to 

 

Hypothesis 1: As basis risk grows, demand falls, and that response changes with premium levels. 

 

We also expect that the impact of the premium changes with basis risk in the same direction as 

𝜕2𝑡𝑙�̃�∗

𝜕𝑝𝜕𝑉𝑎𝑟(𝜀)
 due to symmetry of cross partials in the Hessian matrix. This is consistent with Karlan et al.’s 

(2014) finding that households were less responsive to price incentives in regions with low product 

quality (high design error).  

In some cases it may be that households do not understand the insurance product well. For example, a 

household might think that the insurance product indemnifies all losses or that indemnity payments are 

always made at the end of every season. In either of these cases, basis risk should play no role in the 

purchase decision, although it could have a large impact on the eventual welfare outcomes of the purchase 

decision. Between those two extremes, there may be households that partially understand the insurance 

contract but have some misconceptions.  

Let an individual’s understanding of the product be summarized by the term (𝐼𝑖 = 𝐼 + 𝑧𝑖 ) where 𝐼 

continues to the index that determines indemnity payments, 𝑧𝑖reflects the individual’s misinformation and 

𝐼𝑖  is the index required to produce the indemnity payment that the individual expects to receive. 

Assuming actuarially fair premium rates, the optimal purchase is 𝑡𝑙�̃�∗ =
𝐶𝑜𝑣(𝐼,𝐿)+𝐶𝑜𝑣(𝑧,𝐿)

𝑉𝑎𝑟(𝐼)+𝑉𝑎𝑟(𝑧)+2∗𝐶𝑜𝑣(𝐼,𝑧)
. If the 

misconceptions are negatively and highly correlated with the index, the consumer’s optimal purchases 

could increase with increased basis risk.
12

 Otherwise, households with misconceptions reduce optimal 

purchases with increased basis risk but that response is mitigated by basis risk.
13

 This relationship leads to 

our next hypothesis: 

 

                                                      

12
 

𝑑 𝑡𝑙�̃�∗

𝑑𝐶𝑜𝑣(𝐼𝑖,𝐿)
=

1

𝑉𝑎𝑟(𝐼)+𝑉𝑎𝑟(𝑧)+2∗𝐶𝑜𝑣(𝐼,𝑧)
< 0 if 𝑉𝑎𝑟(𝐼) + 𝑉𝑎𝑟(𝑧) + 2 ∗ 𝐶𝑜𝑣(𝐼, 𝑧) < 0 

13
  

𝑑 𝑡𝑙�̃�∗

𝑑𝐶𝑜𝑣(𝐼𝑖,𝐿)
<

𝑑 𝑡𝑙�̃�∗

𝑑𝐶𝑜𝑣(𝐼,𝐿)
 if 𝑉𝑎𝑟(𝑧) + 2 ∗ 𝐶𝑜𝑣(𝐼, 𝑧) > 0 
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Hypothesis 2: Poor understanding of the product moderates the negative demand response to increases in 

basis risk. At the most extreme levels of misinterpretation of the contracts, households may not respond at 

all to basis risk or might increase demand with basis risk.  

B. Spatiotemporal Adverse Selection 

Indemnifying covariate losses, rather than individual losses, eliminates the prospective impact on 

insurer profits of within index-division cross-sectional adverse selection by decoupling indemnity 

payments from individual losses.
14

 But group-level adverse selection can reemerge if households have 

information on the likelihood of an indemnity payment in the coming season that is not reflected in the 

premium. For example, ecological conditions during the sales window may have predictive power as to 

the likelihood of an upcoming drought. In this case, the consumer has a signal (observed ecological 

conditions) that provides information on the distribution of coming average losses and thus the likelihood 

of indemnity payments, and that information was not incorporated in the product’s pricing. Even in cases 

when the insurer can observe the same information that households can, contracts are not always written 

with variable premium rates. Rather, insurers and reinsurers often set prices according to historic averages 

and are commonly reluctant to change premiums season by season. 

Such intertemporal adverse selection can be incorporated into the above model. Assume that before 

purchasing insurance a household observes a signal that provides information on the likelihood of certain 

end-of-season rangeland conditions that could affect the index for this specific season (𝐸[I∗]) and/or the 

mortality rate at the end of this season (𝐸[𝐿∗]). Let 𝑥∗ be the household’s interpretation of the signal as an 

adjustment to the index 𝐸[𝐼∗] = 𝐸[𝐼] + 𝑥∗ and 𝑦∗be the household’s interpretation of the signal as an 

adjustment to her own expected livestock mortality rate (𝐸[𝐿∗] = 𝐸[𝐿] + 𝑦∗) where 𝑥∗, 𝑦∗ ∈ [−1,1]. We 

can then rewrite 3 as  

 

(3‘) 
𝑡𝑙�̃� =

𝑈′′[(�̅� + 𝑦∗)(𝐼 ̅ + 𝑥∗ − 𝑝) + 𝑐𝑜𝑣(𝐼, 𝐿)] − 𝑈′(𝐼 ̅ + 𝑥∗ − 𝑝 )

[𝑈′′((𝐼 ̅ + 𝑥∗ − 𝑝)2 + 𝑉𝑎𝑟(𝐼))]
 

 

If the signal pertains only to individual losses (𝑥∗ = 0), then 
𝑑𝑡𝑙�̃�

𝑑𝑦∗ =
𝐼−̅𝑝

((𝐼−̅𝑝)2+𝑉𝑎𝑟(𝐼))
, which has the same 

sign as 𝐼 ̅ − 𝑝 and is identical to a change in long-run livestock losses (�̅�). Households that believe they 

will lose livestock at a greater rate in the following season will increase purchases if premiums are 

                                                      

14
 For the same reasons, index insurance reduces the incentives for moral hazard. 
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subsidized and reduce purchases if premiums are loaded. This leads directly to our third core, testable 

hypothesis: 

 

Hypothesis 3: Households will respond to signals of increased losses by increasing purchases if 

premiums are below the actuarially fair rate.  

 

By contrast, if the signal pertains only to the expected index, the outcome is similar to changes in 

loadings/subsidies and is not monotonically increasing or decreasing in 𝑥∗ .
15

 But, just as with the 

ambiguous impact of premium rates on optimal purchases, we can learn about the impact of 𝑥∗ through its 

impact on 
𝑑𝑡𝑙�̃�

𝑑𝑦∗ . The cross partial, 
𝜕2𝑡𝑙�̃�∗

𝜕 𝑥∗𝜕 𝑦∗ =
𝑈′′2[𝑉𝑎𝑟(𝐼)−(𝐼+̅𝑥−𝑝)2]

[𝑈′′((𝐼+̅𝑥∗−𝑝)2+𝑉𝑎𝑟(𝐼))]
2, inherits its sign from 𝑉𝑎𝑟(𝐼) − (𝐼 ̅ +

𝑥 − 𝑝)2
. If, for example, 𝐼 ̅ = 𝑝 and the household receives a signal of increased losses and higher index, 

then 
𝑑𝑡𝑙�̃�

𝑑𝑦∗ > 0 and 
𝑑𝑡𝑙�̃�

𝑑𝑦∗  increases with 𝑥∗ until 𝑥∗2 = 𝑉𝑎𝑟(𝐼) and then 
𝜕2𝑡𝑙�̃�∗

𝜕 𝑥∗𝜕 𝑦∗ ≤ 0. As with the effects of 

premiums on demand, the impact of signals that inform on both losses and index levels is an empirical 

question. If those signals correctly predict coming conditions, such behavior will be evident in a 

correlation between demand and index value.  

A related, spatially defined form of group-level adverse selection can occur when index performance or 

the difference between the expected index value and the premium varies between distinct geographic 

regions.
16

 Differences between expected indemnity payments and the premium are likely to be common 

for products with little data with which to estimate the expected indemnity payment. It is, in essence, 

variance in subsidy/loading rates between divisions caused by error in the provider’s estimated expected 

index values or perhaps intentionally (e.g., variation in state subsidy rates). This type of spatial adverse 

selection is covered in the above examination of the effects of varying the subsidy/loadings.  

A second type of spatial adverse selection can occur if there is variation in the basis risk between index 

regions. That is, there may be very little basis risk in one division and a great deal in another even as 

subsidy/loading rates are similar. As was shown above, regions with higher basis risk are expected to 

have less demand, all else being equal. This generates our fourth core hypothesis: 

 

                                                      

15
 𝜕𝑡𝑙�̃�∗

𝜕 𝑥∗
=

{𝑈′′�̅�−𝑈′}

𝑈′′((𝐼+̅𝑥∗−𝑝)2+𝑉𝑎𝑟(𝐼))
−

2(𝐼+̅𝑥∗−𝑝)𝑈′′{𝑈′′[(�̅�+𝑦∗)(𝐼+̅𝑥∗−𝑝)+𝑐𝑜𝑣(𝐼,𝐿)]−𝑈′(𝐼+̅𝑥∗−𝑝 )}

[𝑈′′((𝐼+̅𝑥∗−𝑝)2+𝑉𝑎𝑟(𝐼))]
2  

16 
Within geographic regions there may be clusters of households for whom the index performs especially well or poorly.  Although the 

resulting variation in demand would likely have a geographic component, the within-division demand patterns have no impact on provider’s 
profits and thus is not adverse selection.   
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Hypothesis 4: Division-level variation in basis risk will cause spatial adverse selection apparent in 

uptake patterns.  

 

This simple, static model conforms to our expectations of reduced demand with increased basis risk. It 

predicts that basis risk will be less important for those who do not understand the product well, and that as 

basis risk increases, price responsiveness will change. In addition, the model is easily extended to include 

factors that may contribute to spatiotemporal adverse selection. It predicts that we should expect to see 

variation in demand within divisions over time that is correlated with rangeland conditions during the 

sales windows and among divisions based on spatial average differences in basis risk.  The important 

point of the model and these analytic findings is that the design features of an index insurance product 

may significantly attenuate demand irrespective of the household characteristics extensively studied in the 

literature to date.  

IV. Research Design & Data 

Before any public awareness campaign began surrounding the January 2010 launch of the IBLI pilot, 

the IBLI research team began to implement a comprehensive household survey that annually tracks key 

parameters of interest such as herd dynamics, incomes, assets, market and credit access, risk experience 

and behavior, demographics, health and educational outcomes, and more. The initial baseline survey was 

conducted in October of 2009, with households revisited annually thereafter in the same October-

November period. A total of 924 households were sampled across 16 sub-locations in four divisions 

(Central, Laisamis, Loiyangalani and Maikona)   of Marsabit District, selected to represent a broad 

variation of livestock production systems, agro-ecology, market accessibility and ethnic composition.
17

 

The codebook and data are publically available at http://livestockinsurance.wordpress.com/publications/. 

A few key elements of the survey design are important to note. Two randomized encouragement 

treatments were implemented to help identify and test key program parameters on demand. In the first, a 

sub-sample was selected to play a comprehensive educational game based on the pastoral production 

system and focused on how IBLI functions in the face of idiosyncratic and covariate shocks. The game 

was played in nine of the 16 sites among a random selection of half of the sample households in each 

selected site, and took place just before the launch of sales in January 2010 (McPeak, Chantarat & Mude 

2010). 

                                                      

17
 This sample was distributed across the 16 sub-locations on the basis of proportional allocation using the Kenya 1999 household population 

census statistics. There were only two exceptions to this rule: a minimum sample size of 30 households and maximum of 100 households per sub-

location. In addition, sampling across each sub-location was also stratified by wealth class based on livestock holdings reported by key 
informants before the selection process.  

http://livestockinsurance.wordpress.com/publications/
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The second encouragement treatment involved a price incentive that introduced exogenous variation in 

premium rates. Discount coupons were randomly distributed to about 60% of the sample before each sales 

season. The coupons were evenly distributed among 10%, 20%, 30%, 40%, 50% and 60% discount levels. 

Upon presentation to insurance sales agents, the coupon entitled the household to the relevant discount on 

premiums for the first 15 TLU insured during that marketing season.
18

 The coupons expired after the sales 

period immediately following their distribution. Each sales period has a new randomization of discount 

coupons. 

The IBLI team also coordinated survey sites to overlap with the Hunger Safety Net Program (HSNP), a 

new cash transfer program launched by the Government of Kenya in April 2009 that provides regular 

monthly cash transfers to a select group of target households in the northern Kenya ASAL (Hurrell & 

Sabates-Wheeler 2013). The regularity and certainty of this cash transfer may impact household liquidity 

constraints and therefore demand for IBLI. Site selection for IBLI extension encouragement was stratified 

to include both communities targeted by HSNP and other, nearby communities that were not. Figure 1 

displays the project’s sample sub-locations across Marsabit and illustrates how they vary in terms of the 

noted elements of the study design. Discount coupons were randomly distributed without stratification. 

This paper uses data from four annual survey rounds from between 2009 to 2012. The attrition rate 

during this period was less than 4% in each round. An analysis of attrition is found in Appendix B. There 

are a number of differences between those households who remained in the survey and those who attrited 

(Table B4), as well as between those who exited the survey and their replacements (Table B5). For a 

discussion of the causes of attrition see ILRI (2012). We control for these characteristics in our analysis to 

mitigate prospective attrition bias introduced by this possible selection process, but the rate of exit is low 

enough and differences small enough that attrition should be of little worry. 

It is important to note that analysis of demand is performed seasonally while the survey data were 

collected annually. Although seasonal data were collected for many variables through recall, some 

characteristics were collected for only one reference point annually. In those cases, the annual values 

collected in October/November are used to represent household characteristics during the March-

September LRLD insurance season and the current October-February SRSD season. When estimating an 

average or distribution parameter (e.g., variance, covariance) all eight seasonal observations are used to 

estimate a single statistic, which is then treated as a constant over all periods. These details are described 

in more detail in the following section. 

V. Discussion of Key Variables  

                                                      

18
 Of the nine sample households that purchased insurance for more than 15 TLUs, six used a discount coupon for the first 15TLUs. 
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IBLI purchases among those surveyed and within the general population across the Marsabit region 

were greatest in the first sales window and declined in the following periods (Table 1).
19

 About 45% of 

the balanced panel (N=832) purchased IBLI coverage at least once during the four sales periods covered 

in these data, a relatively high rate of uptake when compared against other index insurance pilots in the 

developing world. Conditional on purchasing an IBLI policy, the mean coverage purchased among the 

same sample was 3.15 TLUs or 24% of the average herd size during the sales windows. Table 2 details 

the frequencies of observed transitions between purchased coverage, existing coverage, and lapsed 

coverage. Figure 2 illustrates the proportion of the sample that purchased IBLI during each sales window 

and the level of purchase, conditional on purchasing.  

Although existing research, which we discuss in detail below, has already provided a framework by 

which to understand many of the household-level factors the influence index insurance demand, we are in 

the unique position to empirically examine the role of basis risk and spatiotemporal adverse selection. 

Both are thought to impact demand but have not yet been tested using observations of household losses. 

At the same time, we reinforce previous findings in the literature by including factors that have been 

found to influence demand elsewhere. This section discusses the key variables used in the analysis.  

A. Basis Risk 

Low uptake is often thought to be due to basis risk, although no studies to date have had a direct 

measure of basis risk with which to test that hypothesis. Here it becomes useful to decompose basis risk 

into its design and idiosyncratic components. Design risk arises due to differences between predicted and 

actual division-average livestock mortality and can be corrected by adjusting the index. Idiosyncratic risk 

is due to differences between the covariate and individual losses and is intrinsically uncorrectable in the 

index.
20

 

One might think of design risk as an indicator of contract adherence, so far as it is the result of a 

deviation between the intended and actual coverage provided by a policy. But, households are unlikely to 

have information about the accuracy (or inaccuracy) of an index before product introduction. In cases 

where index products are new, such as in the Marsabit IBLI pilot we study, individuals must learn about 

design risk as index performance is revealed through observations of published index values (Karlan et al. 

2014).  

                                                      

19
 It is important to note that IBLI was not available for purchase during the short rain/short dry (SRSD) 2010 or long rain/long dry (LRLD) 

2012 seasons due to logistical failures in the commercial supply channel. 
20

 We did not distinguish between design and idiosyncratic risk in Section 3 because their combined effect determines the level of risk that an 

insured individual retains. Because design risk can be corrected through index modification while idiosyncratic risk cannot, this decomposition is 
nonetheless useful.   
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We use the difference between the index and covariate losses during seasons that IBLI coverage was 

available and index values were publicized to generate our estimates of perceived or observed design risk.  

These estimates are a lagged moving average of within-division design error during preceding seasons in 

which IBLI coverage was available. We assume households expect no design error in the first sales round, 

which is reasonable in this context considering that extension and education focused on the likelihood of 

idiosyncratic risk but did not discuss design risk at all. After the first round, households discard their 

initial naive expectation and update so that their posterior is the average observed design error. They 

continue to do so in each of the following rounds. Table 3 reflects the observed design error estimates as 

well as the seasons used to make each estimate.  

Price surely matters to insurance uptake (Cole et al. 2013, Giné, Townsend & Vickery 2008, Karlan et 

al. 2014). The effective premium rate is calculated as the natural log of the premium rate after accounting 

for randomly distributed discount coupons. The effective premium rate is also interacted with observed 

design error to test Hypothesis 1 that the price elasticity of demand changes with basis risk and to 

estimate the sign of that change. 

Although households initially have very little information on index accuracy, they are likely to already 

be quite familiar with their own historical losses and how those losses relate to the average losses within 

their division — i.e., their idiosyncratic risk. Households that systematically face high losses that are 

unrelated to covariate losses are less likely to benefit from even an accurate (i.e., no design error) index 

product. The variance in livestock mortality rate is a measure of the insurable risk that a households faces. 

The correlation between individual and covariate losses offers a measure of the how well covariate risk 

matches household risk, providing an indication of the amount of coverage that an index insurance 

product with zero design error could provide. A household with a correlation of one could be fully 

covered by an area average loss index insurance product like IBLI. As correlations fall from one, 

idiosyncratic risk increases and index insurable risk falls.  

Figure 3 displays histograms of the estimated correlation between individual losses and covariate losses 

in each division. There is clearly a great deal of variation within and between divisions in the individual-

covariate loss correlation. Indeed, 15.4% of households have a non-positive correlation, implying that 

even if IBLI suffered from zero design risk, it would be risk-increasing for them despite its insurance 

label.  

In order to accurately incorporate knowledge of idiosyncratic risk into their purchase decision, 

households must also understand that the IBLI contract is meant to insure only covariate risk. Without 

that understanding, households might not link purchases with their level of idiosyncratic risk. Ideally an 

estimate of idiosyncratic risk could be interacted with household understanding of IBLI. Although the 
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IBLI survey does include a simple test of accuracy of IBLI knowledge, that evaluation could not be 

collected before the first sales period and is likely endogenous to the decision to purchase an IBLI policy.  

As a proxy for IBLI knowledge, we include a dummy for participation in the randomized education 

game described in the research design section. Participation in the game had a strongly positive and 

significant impact on performance on the IBLI knowledge test (Table 4). There is some prospect that 

game participation leads to purchasing through a mechanism other than knowledge (e.g., trust, a sense of 

obligation) so that the above test reported in Table 4 captures an increase in knowledge due to purchase 

rather than due to the educational component of the game. This is tested by restricting the analysis to only 

those households who never purchase IBLI. As reflected in the second row of Table 4, among those who 

never purchase IBLI, participation in the game increased average IBLI knowledge test scores by nearly 36% 

(p-value<0.01), providing strong evidence that randomized participation in the extension game directly 

leads to greater IBLI knowledge. The indicator variable for exogenous game participation is therefore 

interacted with the idiosyncratic risk estimate in order to test Hypothesis 2 that greater understanding of 

the IBLI contracts impacts consumer response to basis risk.  

B. Spatiotemporal Adverse Selection 

IBLI is susceptible to intertemporal adverse selection because droughts leading to high livestock 

mortality are often the result of multiple seasons with poor precipitation so that households may wait until 

conditions are very poor before purchasing insurance. We include two variables—Pre-Czndvi and the 

household’s expectation of rangeland conditions in the coming season—to capture ecological conditions 

that pastoralists may observe while making their purchase decision 

Pre-Czndvi is a variable used in the IBLI response function to control for conditions at the beginning of 

the season and is calculated by summing standardized NDVI values from the beginning of the previous 

rainy season until the current sales period. Higher Pre-Czndvi values indicate greater relative greenness 

during the rainy season leading up to the current insurance season. Although the index takes Pre-Czndvi 

into account when estimating livestock mortality and premiums could be adjusted to reflect the level of 

risk at the beginning of a season, the insurer and reinsurer have chosen not to vary premium rates to 

account for this observed intertemporal variation in livestock mortality risk. Pre-Czndvi has a statistically 

significant and negative relationship with predicted livestock mortality rates (column 1, Table 5). Thus, if 

households observe the relative greenness that is captured by Pre-Czndvi, they could use those 

observations to help predict coming index values and adjust their purchase decisions accordingly. 

A set of dummy variables specify the household’s stated expectations for the coming season’s 

rangeland conditions: good, normal, or bad. Expectation of good or normal rangeland conditions are 

negatively and statistically significantly correlated with end-of-season index values (predicted livestock 
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mortality rates) as is expected if they correctly predicted coming rangeland conditions (column 2, Table 

5). Hypothesis 3 predicts that as long as premium rates are below the expected indemnity rate, households 

expecting higher livestock mortality rates will increase purchases but is ambiguous about the impact of 

that expectation if it also suggests higher index values.
21

  

Households’ expectations of rangeland conditions may contain information that is captured by the Pre-

Czndvi variable or the households may be observing additional information that is not captured by the 

remotely sensed NDVI. Regressing predicted livestock mortality onto both Pre-Czndvi and households’ 

expectations of coming conditions provides strong evidence that the households have additional 

information that is not captured by Pre-Czndvi.  The implication is the although IBLI providers could 

reduce the potential for intertemporal adverse selection associated with initial rangeland conditions by 

adjusting premium rates according to Pre-Czndvi, they would continue to face risk of intertemporal 

adverse selection arising from accurate private information held by their potential consumers.  

We also test for spatially defined adverse selection, which could emerge due to variation in the 

subsidy/loading rate in policies or variation in the quality of the policies. Variation in subsidy/loading rate 

results from the aggregation of index divisions into larger premium regions so that lower risk divisions 

are implicitly subsidizing the premium rates of higher risk division in the same premium region. Division-

average livestock mortality rate and risk (variance in livestock mortality rate) are used to capture division-

level differences in risk, and thus in actuarially fair premium rates of a perfect index product. Division 

average idiosyncratic risk (correlation between livestock mortality rate and covariate livestock mortality 

rate) provides an estimate of the average levels of basis risk and its importance relative to total risk within 

each division. Per Hypothesis 4 we expect higher levels of division average idiosyncratic risk to adversely 

affect IBLI uptake. 

C. Additional Key Variables 

Within the standard model of insurance, exposure to risk coupled with risk aversion is the fundamental 

reason for insurance demand. At any level of positive exposure to risk, the benefits of indemnified losses 

increase with level of risk aversion. But the impact of risk aversion on demand is somewhat ambiguous 

when market imperfections, such as basis risk or premium loadings, enter the picture. Most empirical 

studies of index insurance demand assume a monotonic relationship between risk aversion and demand, 

often finding that increased risk aversion is associated with decreased demand (i.e., Giné, Townsend & 

Vickery 2008; Cole et al. 2013). This negative correlation between risk aversion and demand for 

                                                      

21
 The effective seasonal subsidies (E[indemnity payment rate]-seasonal premium rate) for the periods examined here are as follows: 

Central/Gadamoji 0.0249, Laisamis 0.0171, Loiyangalgani 0.0148, and Maikona 0.017 
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insurance has been interpreted as evidence that index insurance uptake in developing countries is more 

similar to technology experimentation/adoption than to neoclassical models of insurance demand. Hill, 

Robles, and Ceballos (2013) allow for a nonlinear relationship, specifically testing for hump-shaped 

demand across risk aversion as predicted by Clarke (2011), but find no significant difference in demand 

across the domain of observed risk aversion. In a setup similar to that used by Hill, Robles, and Ceballos 

(2013), we allow for a non-linear relationship between risk aversion and demand as predicted by (Clarke 

2011). 

Whether households place more importance on absolute or relative risk is an empirical question that has 

not yet been addressed in the context of index insurance. To determine which is more important, we 

include total herd size and ratio of income generated from livestock and livestock related activities. Total 

herd size provides an absolute measure of exposure to asset risk associated with IBLI insurable assets, 

while the ratio of income that is generated from livestock and livestock related activities approximates the 

relative income risk associated with livestock mortality.  

Theory and empirical evidence are also ambiguous as to how wealth should affect demand for 

insurance when prices are actuarially unfavorable. Clarke (2011) shows that the relationship between 

wealth and demand is not monotonic for most reasonable utility functions in such environments. 

Empirical studies offer contradictory evidence, finding that demand increases (Cole et al. 2013; Mobarak 

& Rosenzweig 2012) or decreases (McIntosh, Sarris, & Papadopoulos 2013) in variables associated with 

wealth. The empirical literature on poverty traps, which has been shown to exist among east African 

pastoralists (Lybbert et al. 2004, Barrett et al. 2006, Santos and Barrett 2011), indicates that demand may 

be non-linear in wealth, changing dramatically across certain asset thresholds as households try to avoid 

or to break free of a low asset dynamic equilibrium (Chantarat et al. 2014; Janzen, Carter & Ikegami 2012; 

Lybbert, Just, & Barrett 2013). We summarize household wealth with an asset index generated through 

factor analysis of an extensive list of household construction materials, productive assets excluding 

livestock, and other durables (Appendix B).  

Lack of liquidity is often found to constrain demand. Mobarak and Rosenzweig (2012) found that lack 

of cash was the primary reason given by Indian farmers for not purchasing an available index insurance 

product. Although liquidity is likely correlated with wealth, it can constrain demand at any wealth level 

(Cole et al. 2013). In order to capture liquidity, we calculate the sum of cash savings on hand or placed 

within any of several formal and informal savings arrangements. A household’s savings are liquid and 

provide a lower band estimate of access to liquid capital. We also include an estimate of monthly income 

and participation in the Hunger Safety Net Program (HSNP), an unconditional cash transfer program that 
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was launched in the Marsabit region in 2009. 
22

 Although HSNP participation was not random within 

communities, we are able to cleanly identify the impact of transfers on demand by controlling for the 

known and corroborated household selection criteria and HSNP community selection.
23

  

Access to informal insurance schemes can be an important factor in demand for formal insurance. 

Mobarak and Rosenzweig (2012) show that informal risk pools that insure against idiosyncratic shocks 

complement index insurance with basis risk while informal schemes that protect against covariate shocks 

act as a substitute. In the pastoral societies of east Africa, informal risk sharing through livestock transfers 

and informal credit appears to be modest at best (Lybbert et al. 2004; Santos & Barrett 2011) and not 

timed so as to reduce the impact of shocks or to protect assets (McPeak 2006). But, because informal risk 

sharing is extremely relevant to this work and has empirically been found to impact demand for index 

insurance in India (Mobarak & Rosenzweig 2012), we include the number of informal groups that the 

household participates in as a coarse indicator of potential access to risk pooling.
24

  

Finally, we expect that existing coverage still in force could impact purchase decisions and so control 

for existing coverage in that period.
25

 

Appendix B describes how each variable is constructed and which are lagged to avoid capturing 

changes due to paying the premium or due to behavior responses to having IBLI coverage. Table B2 

provides summary statistics, distinguishing between those households who never purchased IBLI over the 

four sales windows and those who purchased at least once. Differences in unconditional means between 

the two groups show that the groups are mostly similar except for in those variable directly associated 

with purchases. 

VI. Econometric strategy 

                                                      

22
 HSNP provides transfers every two months to eligible households for at least two years. The bimonthly transfers started at 2,150Ksh in 

2009 (about USD25) and increased to 3,000Ksh in 2011 and then increased again in 2012 to 3,500Ksh in order to help households cope with a 

severe drought. 3,500Ksh could have purchased insurance for about 7 cattle in the lower Marsabit region at that time. There was no retargeting of 

or graduation from HSNP, which could have led to perverse incentives not to purchase IBLI if insurance has a beneficial impact on wealth. 
23

 For more details on the HSNP program logistics go to http://www.hsnp.or.ke/ while analysis of impacts can be found in Hurrell & Sabates-

Wheeler (2013) and Jensen, Barrett and Mude (2014b).  
24

 Although ethnic group is also likely to be important in determining access to informal insurance, collinearity between ethnicity and 

location makes that aspect difficult to examine while also examining other variables that are correlated with location, such as the expected 

subsidy level and HSNP participation.  
25

 The IBLI contracts provide coverage for 12 months following the sales window in which they were purchased. If there had been sales 

windows before each semi-annual rainy season, it would be common for households to enter sales windows with existing coverage for the 

following season from the preceding season. Logistical problems faced by the insurer did not allow for consistent sales twice a year, but the 

survey does capture two consecutive sales seasons during which IBLI policies were sold. We use a dummy variable to indicate existing coverage.  

If households with existing coverage reduced purchases due to their existing coverage, a continuous variable might be more appropriate. That 

does not seem to be the case.  Households with existing coverage are much more likely to purchase additional insurance than those without it 

(difference = 13.6%, t-statistic=4.265) but existing coverage does not impact level of purchase conditional on purchasing (difference = 0.22, t-
statistic=0.387). 

http://www.hsnp.or.ke/
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We seek to identify the factors that influence demand for IBLI. Insurance demand is best modeled as a 

two stage selection process. Propensity to purchase is first determined as the household decides whether 

or not to buy IBLI. Those households who choose to purchase then decide how much to buy. Let ℎ𝑖𝑡
∗  and 

𝑦𝑖𝑡
∗  be latent variables that describe the categorical desire to purchase insurance and the continuous, 

optimal level of purchase, respectively. If ℎ𝑖𝑡
∗ > 0 we observe the positive level of purchase 𝑦𝑖𝑡 = 𝑦𝑖𝑡

∗  , 

and if ℎ𝑖𝑡
∗ ≤ 0, we observe 𝑦𝑖𝑡 = 0. We write the process as a function of time invariant individual 

characteristics (𝑐𝑖, 𝑑𝑖 ) including a constant term, time varying individual and division characteristics 

(𝑥𝑖𝑡 , 𝑧𝑖𝑡), and error terms (𝑢𝑖𝑡 , 𝑣𝑖𝑡) as follows. 

 

(5) 𝑦𝑖𝑡
∗ = 𝑐𝑖

′𝜂 + 𝑥𝑖𝑡
′ 𝛽 + 𝑢𝑖𝑡 

 ℎ𝑖𝑡
∗ = 𝑑𝑖

′𝜂 + 𝑧𝑖𝑡
′ 𝛾 + 𝑣𝑖𝑡 

 
𝑦𝑖𝑡 = {

0 𝑖𝑓 ℎ𝑖𝑡
∗ ≤ 0

𝑐𝑖
′𝜂 + 𝑥𝑖𝑡

′ 𝛽 + 𝑢𝑖𝑡 𝑖𝑓 ℎ𝑖𝑡
∗ > 0

} 

 

If the same process is used to determine the desire to purchase insurance and the level of purchase, then 

𝑦𝑖𝑡
∗ ≡ ℎ𝑖𝑡

∗  and the model reduces to Tobin’s (1958) model for censored data. In the case of IBLI (and for 

many other cases) there is reason to believe that the two processes may differ. For example, the 

probability of purchasing any IBLI coverage is likely correlated with the distance that the purchaser must 

travel to make the purchase. There is little reason to think that the same distance variable would affect the 

level of purchase. If demand is a two stage process but the two decisions are independent (conditional on 

observed covariates), each stage can be estimated separately and consistently using a double hurdle model 

(Cragg 1971).  

In this context, the two decisions most likely fall somewhere between Tobin’s assumption that they are 

identical and Cragg’s assumption that they are independent. That is, 𝑢𝑖𝑡 and 𝑣𝑖𝑡are not identical but they 

are correlated so that both the single model and independent models result in biased estimates of  𝛽. 

Heckman (1979) suggests that such bias is due to a missing variable that accounts for selection. To 

control for selection, Heckman proposed including the ratio of the predicted likelihood of selection to the 

cumulative probability of selection (the inverse Mills ratio). The inverse Mills ratio is estimated by first 

using a probit model to estimate Pr(𝑠𝑖𝑡 = 1|𝑑𝑖,𝑧𝑖𝑡) = Φ(𝑑𝑖,𝑧𝑖𝑡, 𝜂, 𝛾), where 𝑠𝑖𝑡 = {
0 𝑖𝑓 ℎ𝑖𝑡

∗ ≤ 0

1 𝑖𝑓 ℎ𝑖𝑡
∗ > 0

}. The 

estimates are then used to calculate the inverse Mills ratio �̂�𝑖𝑡 =
𝜙(𝑑𝑖,𝑧𝑖𝑡,�̂�,�̂�)

Φ(𝑑𝑖,𝑧𝑖𝑡,�̂�,�̂�)
 , where 𝜙(𝑑𝑖,𝑧𝑖𝑡 , �̂�, 𝛾) is the 

normal density. 
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Accounting for unobserved household level fixed effects is then a matter of applying panel data 

estimation methods to Heckman’s framework. For short panels, the standard fixed effects approaches 

suffer from the incidental parameters problem when applied to probit models.
26

 But, if the data generating 

process is best described by the fixed effects model, pooled and random effects models will also be biased. 

Greene (2004) compares the magnitude of the bias introduced by estimating pooled, random effects, and 

fixed effects probit parameters for data generated by a probit process with fixed effects. At T=3 and T=5, 

Greene finds the random effects estimates are the most biased, and that the bias associated with the 

pooled and fixed effects models are similar in magnitude. In addition, standard errors are likely to be 

underestimated in the fixed effect model. We include pooled estimates in this analysis, acknowledging 

their likely bias but appealing to Greene’s (2004) result that these are likely least bad estimates.  

As an alternative, we also follow a procedure developed by Wooldridge (1995), which builds off of 

earlier work by Mundlak (1978) and Chamberlain (1980), to allow for correlation between the fixed 

effects and a subset of within-household mean characteristics (�̅�𝑖
𝐹𝐸) but assume independence conditional 

on the mean. In addition the errors are assumed to be distributed normally. 

 

(6) 𝑐𝑖 = �̅�𝑖
𝐹𝐸′𝛾1 + 𝑒𝑖𝑡

𝑐 , 𝑒𝑖𝑡
𝑐 |�̅�𝑖

𝐹𝐸~𝑁(0, 𝜎𝑒
2) 

 𝑑𝑖 = �̅�𝑖
𝐹𝐸′𝛿1 + 𝑒𝑖𝑡

𝑑 , 𝑒𝑖𝑡
𝑑|�̅�𝑖

𝐹𝐸~𝑁(0, 𝜎𝑒
2) 

 
�̅�𝑖

𝐹𝐸 =
1

𝑇
∑ 𝑥𝑖𝑡

𝐹𝐸

𝑇

, 𝑥𝑖𝑡
𝐹𝐸 ⊆ 𝑥𝑖𝑡 , 𝑧𝑖𝑡 

 

As with the Heckman selection process described above, a probit model is used to estimate the inverse 

Mills ratio, but in this case the estimate is a function of household average characteristics and period 

specific characteristics �̂�𝑖𝑡 =
𝜙(�̅�𝑖

𝐹𝐸′
,𝑧𝑖𝑡,�̂�1,�̂�,�̂�)

Φ(�̅�𝑖
𝐹𝐸′

,𝑧𝑖𝑡,�̂�1,�̂�,�̂�)
. In order to add more flexibility, and thus accuracy, to the 

first stage estimations, the probit model is estimated separately for each period. 

 Within-household mean characteristics are estimated using all eight seasonal observations while 𝑠𝑖𝑡 

and 𝑦𝑖𝑡 are only estimated during the four seasons in which there were sales. For those variables that 

appear in our estimates twice, as a household mean and a period specific observation, we use the 

deviation from the mean as the period-specific observation to facilitate interpreting the estimates.  

                                                      

26
 Because the probit model is non-linear the parameters must be estimated using within household observations, of which we have a 

maximum of four.      
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We report the pooled and the conditionally independent fixed effects estimates, while relying primarily 

on the latter as the preferred estimates. If the data generating process does include unobserved individual 

effects that are correlated with our outcome variables and the covariates, our pooled estimates are likely 

to be biased but perform better than either random or fixed effects models (Greene 2004). The 

conditionally independent fixed effects should generate estimates that are at the very least, less biased 

than those from the pooled model.  

Both models are estimated using maximum likelihood. Although effective (discounted) price is 

included in both selection and demand equations, a dummy variable indicating that the household 

randomly received a discount coupon is included in the selection equation but is excluded from the 

demand equation. The discount coupon serves merely as a reminder of the product availability and thus 

should affect the dichotomous purchase decision but have no effect on the continuous choice of insurance 

coverage conditional on purchase once we control for the effective discounted price. Although there is no 

agreed upon exclusion test for selection models, we perform two exploratory tests that support the 

exclusionary restriction on the coupon dummy variable in the demand equation, as reported in Appendix 

C. 
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VII. Results and Discussion 

Wooldridge (1995) describes a test for selection that assumes conditionally independent fixed effects in 

the selection stage but relaxes the conditional assumption in the outcome stage. That test does not reject 

the null hypothesis of an independent second stage at the standard 10% level of statistical significance (F-

stat=2.06, p-value=0.1522), but is near enough to warrant caution.  Thus, we proceed as though demand 

for IBLI can only be understood by first examining the factors that determine who purchases IBLI and 

then what drives the levels of purchases conditional on purchasing.
27

 In the following discussion we focus 

on the estimates generated from the conditional fixed effects model while also reporting the pooled 

estimates. The average marginal effects (AME) estimates are provided in tables 8 and 10 while the 

regression coefficient estimates can be found in Appendix E.
28

  

A. Determinants of IBLI uptake 

The relationship between wealth, access to liquidity, investments in livestock, and uptake are 

predictably complicated (Table 8). Herd size and HSNP transfers are positively related to IBLI purchase 

while asset wealth is negatively related to purchases. Although these estimates may seem superficially 

contradictory, in the context of a new technology in a pastoral region they strike us as intuitive. 

Households with larger herds have the greater potential absolute gains from the IBLI product. Large herds 

also require mobility to maintain access to forage (Lybbert et al. 2004) and many of the larger assets 

included in the asset index (e.g., TV, tractor, plow) are likely to be less appropriate for mobile, livestock-

dependent households for whom IBLI should be most valuable.   

There is weak evidence of intertemporal adverse selection and strong evidence of spatial adverse 

selection. Households in divisions with greater average livestock mortality rate, lower variation in that 

rate (risk), and less idiosyncratic risk (as captured by greater average correlation between losses and the 

index) are more likely to purchase IBLI. The negative relationship between idiosyncratic risk and uptake 

is consistent with Hypothesis 4 from our analytic model. The fact that greater variation in livestock losses 

is associated with reduced uptake requires a closer look at the data. One likely explanation is that there is 

greater idiosyncratic risk (and thus basis risk) in divisions with more variation in losses. We test for a 

positive correlation between division average variance in livestock mortality rate and division average 

                                                      

27
 Analysis of uptake and level of purchase separately provides estimates that are very similar to those described in this paper.  Importantly, 

our findings concerning the importance of basis risk and adverse selection are the same.  
28

 The second stage of the conditional fixed effects model is estimated using inverse Mills ratios generated by estimating the first stage probit 

model separately for each period.  In Tables 8 and E.1, we present the average coefficient estimates generated by pooling the four periods, 
including both time specific and household average characteristics. 
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idiosyncratic risk, and find that the correlation is indeed positive and significant (rho=0.98, p-value=0.004, 

N=4).  

Observed design error has a significant and negative AME on uptake, consistent with Hypothesis 1. 

Although the estimated AME of price is statistically insignificant, the coefficient estimates (Table E.1) 

show that the interaction between price and observed design error is important. Examining the impact of 

design error across a range of observed IBLI prices reveals that AME of observed design error is negative 

and increases in both significance and magnitude as prices increase, consistent with Hypothesis from our 

analytic model (Table 9). The same test for price response at various levels of observed design error 

shows that at low levels of design error uptake does not respond strongly to prices, while at higher levels 

of design error price plays a much more significant role in determining uptake.  When observed design 

error is one standard deviation above the mean, the average effect of a one unit increase in prices is to 

reduce uptake by 7.9% (AME=-0.079, t-statistic=-1.68).  

Households with consistently high participation in social groups have a greater propensity to purchase 

IBLI (Table 8). Although participating in social groups could be endogenous to purchasing IBLI, we find 

that lagged participation in the pooled model (column 1, Table 8) and household’s average participation 

(including 3 seasons before the first sales season., column 3, Table 8) has a positive and significant 

impact on uptake. Plausible explanations for the positive relationship between social group participation 

and IBLI uptake include the complementarities between index insurance and informal idiosyncratic risk 

pooling described by Mobarak and Rosenzweig (2012) and learning through social networks (Cai, de 

Janvry & Sadoulet 2011).  

Randomized exposure to the IBLI educational game allows us to look more closely at the impact of 

learning. Here we see that increased IBLI knowledge associated with participating in the game has no 

discernible impact on the decision to purchase IBLI (Table 9), although we know it does have a strong 

impact on understanding of the IBLI product (Table 4). In that case, it seems less likely that the pathway 

by which participation in social groups impacts demand is through increased understanding of the product 

and the argument that social group linkages stimulate IBLI uptake due to complementarities with informal 

insurance is stronger.  

The discount coupon, which is excluded in the second stage, has an AME of +17% on the likelihood of 

purchasing insurance and is statistically significant at the one percent level. Quite apart from the price 

effect of the discount coupon, it seems to serve a useful role as a visible reminder to households of the 

availability of insurance. 
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B. Quantity of Insurance Purchased 

The continuous IBLI purchase decision reveals some of the same patterns evident in the decision to 

purchase (Table 10). Larger herds are again associated with increased demand.
29

 But, among those 

purchasing, demand increases with greater asset wealth, greater income, and income diversification into 

non-livestock related activities (nearly all of which generates cash earnings). Jointly, these results provide 

strong evidence that demand is liquidity constrained among those seeking to purchase IBLI.
30

 Referring 

back to our model of household demand for insurance, we could not analytically sign many of the 

relationships between household financial characteristics and demand because of the ambiguity of the 

wealth effect on demand. Empirically we also find mixed responses, such as asset wealth reducing the 

likelihood of uptake but increasing coverage levels conditional on uptake, while livestock wealth is 

associated with increases in both uptake and conditional coverage levels. 

There is evidence of both inter-temporal and spatial adverse selection in IBLI purchases conditional on 

positive demand. For households that purchase insurance, the AME of expecting good rangeland 

conditions represents an 11.2% reduction in coverage from the mean coverage purchased.
31

 The 

coefficient estimate for Pre-Czndvi (a division level proxy for rangeland conditions at the time of sale) is 

also negative and statistically significant. Division level risk has a positive impact on level of purchase so 

that households in divisions with high average risk are less likely to purchase but buy more coverage, 

conditional on purchasing. In addition, those divisions with higher average livestock mortality rates are 

more likely to purchase IBLI, but purchase less coverage.  

The correlation between individual and covariate losses plays a role in determining level of demand, 

although its impact is somewhat obscured by interactions (Table E.2). Separating purchasers by game 

play, the estimated AME of the correlation between an individual’s losses and the covariate losses of their 

division is negative and significant for households who did not participate in the IBLI extension game 

(Table 11). Although this does not confirm Hypothesis 2 on the interaction between understanding the 

IBLI product and the impact of basis risk on demand, it does point to a grave misunderstanding of the 

product among those that did not received product education via the extension game. As discussed in 

                                                      

29
 The AME of herd size is positive but less than one, revealing that households with larger herds insure more animals but a smaller portion 

of their total herd.   
30

 All household income was derived from livestock in about 53% of the household observations during sales season. During the same 

periods, 47% of the households that purchased insurance generated all of their income from livestock in the period that they purchased. Non-

livestock income sources captured in the survey are from sale of crops, salaried employment, pensions, casual labor, business, petty trading, gifts, 
and remittances. 

31
 The AME of expecting good rangeland conditions is -0.2709 while the averse coverage purchased is 2.429 TLUs. 
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Section 4, participation in the IBLI game was randomized and has a large and significant impact on 

understanding of the IBLI product (Table 4). Here we see that purchase levels among those with less 

understanding of the product are higher among those with less covariate (insurable) risk.
32

  

Price is a significant factor influencing demand conditional on uptake, but demand is rather price 

inelastic, with an AME -0.43, lower than any of the other estimates we find in the literature. Examining 

the impact of observed design error on the price elasticity of demand, we find that the elasticity of 

demand and statistical significance of premium rates increases at higher levels of observed design error 

(Table 11). But, there is no direct negative effect of design error on level of purchase even at high 

premium levels. Jensen, Barrett and Mude (2014a) shed some light on why households may not have 

responded to design risk directly; in most cases design risk is minor when compared to idiosyncratic risk. 

Hence our findings that demand is much more closely linked with indicators of adverse selection make 

perfect sense.  

A Shapley’s R
2
 decomposition sheds some light on which factors contribute most to explaining 

variation in IBLI uptake and level of purchase.  After grouping the covariates into several categories, we 

re-estimate the uptake and demand equations separately and decompose their goodness of fit measures 

using the user-written STATA command shapely2 (Juárez 2014), which builds off earlier work by 

Kolenikov (2000) and theory by Shapley (1953) and Shorrocks (2013).
33

 The Shapley R
2
 decompositions 

reported in Appendix F should be interpreted as the ratio of the model’s goodness of fit (R
2
 or Pseudo R

2
) 

that can be attributed to each group of variables.  For both uptake and level of demand, the role of adverse 

selection and product related variables in explaining demand is larger than that of household 

characteristics (demographics and financial), providing strong evidence that product design and the nature 

of the insured risk are at least as important as household characteristics in driving index insurance uptake. 

The Shapley values indicate that the three variables associated with design risk and price are responsible 

for 21% of our goodness of fit measure for the uptake model, a considerable share considering that there 

are more than 25 other covariates and that the discount coupon accounts for 35% of the model’s fit.  The 

role of design risk and price falls by about 5 points when examining level of purchase, where spatial and 

temporal adverse selection become increasingly important.  Together the two groups of adverse selection 

variables account for 32% of the model’s goodness of fit for level of purchase.  The importance of 

                                                      

32
 Household level risk is accounted for in the risk variable so that this effect is not due to level of covariate risk picking up the effects of total 

risk. In addition, very few households ever purchase coverage for more animals than they hold so that this is unlikely to be the result of 

households (mistakenly) over-insuring to make up for uninsured idiosyncratic risk.   
33

 The variable categories are demographic, financial, intertemporal adverse selection, spatial adverse selection, idiosyncratic risk and 

knowledge, design risk and price, other, and the instrumental variable. 
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idiosyncratic risk to the fit of the model is fairly low and consistent in both uptake (5.46%) and level of 

purchase (5.42%).   

C. Concluding Remarks 

The above analysis provides strong empirical evidence that in addition to price and household 

characteristics, index insurance product characteristics such as adverse selection and basis risk play 

economically and statistically significant roles in determining demand.  The point estimates from our 

analysis (Table E1 and E2) predict the changes in IBLI purchases over time rather well, showing a 

reduction in uptake after the first period and a small upturn in the final period (Figure 4).   

With the model estimates and Shapely values in mind, it is clear that both product and household 

characteristics play an important role in determining demand for index insurance. While little can be done 

to change household characteristics, it may be possible to improve contract design to lessen adverse 

selection and idiosyncratic risk.  For example, IBLI no longer aggregates index divisions into premium 

regions, removing one source of spatial adverse selection. Adjusting premium rates dynamically to 

account for initial season conditions is an additional step that could be taken to reduce adverse selection.  

Idiosyncratic risk limits the potential impact of even a perfect index product, but is in part a construct of 

the index division, which could be adjusted to increase the importance of covariate risk.  Finally, reducing 

design risk is likely to be relatively simple if household-level data are collected and used to improve the 

performance of the index. The evidence from the IBLI pilot in northern Kenya clearly underscore the 

importance of index insurance design to resulting demand patterns for these innovative financial 

instruments. 
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FIGURES 

 

 

FIGURE 1. SURVEY DESIGN, PARTICIPATION IN IBLI GAME AND HSNP TARGET SITES  

 

 

 

 

 

FIGURE 2. IBLI PURCHASING BEHAVIOR DURING EACH SALES WINDOW 
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FIGURE 3. HISTOGRAMS OF THE CORRELATION BETWEEN INDIVIDUAL AND COVARIATE LIVESTOCK MORTALITY RATES 

 

 

 

 

 

  
 

FIGURE 4. UNCONDITIONAL OBSERVED AND PREDICTED LIKELIHOOD OF PURCHASING IBLI (LEFT) AND LEVEL OF PURCHASES, CONDITIONAL ON 

BEING A PURCHASER (RIGHT) 
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TABLES 

TABLE 1. REPRESENTATION OF DEMAND FOR IBLI IN THE SURVEY SAMPLE  

     IBLI survey households 

Survey# Sales Window IBLI Coverage Period  Total Contracts Sold Did Not 

Purchase 

Purchased 

R1 (2009) - -  - - - 

- -  - - - 

R2 (2010) J-F 2010 LRLD10/SRSD10 (N) 1,974 679 245 

  (Mean) & 3.0 - (3.94) 

None - (N) - - - 

   (Mean) & - - - 

R3 (2011) J-f 2011 LRLD11/SRSD11 (N) 595 790 134 

  (Mean) & (2.1) - (3.05) 

A-S 2011  SRSD11/LRLD12 (N) 509 797 127 

   (Mean) & (1.6) - (2.39) 

R4 (2012) None - (N) - - - 

  (Mean) & - - - 

A-S 2012 SRSD12/LRLD13 (N) 216 844 80 

   (Mean) & (1.9) - (2.64) 

Notes: LRLD and SRSD refer to the long rain/long dry and short rain/short dry season respectively. There were no sales during the Aug/Sept 

2010 and Jan/Feb 2011 sales periods due to supply channel failures. Jan/Feb 2010, Jan/Feb 2011 & Aug/Sept 2011 were sold by UAP Insurance. 

Aug/Sept 2012 was sold by APA Insurance. #Surveys were collected during October and November of each year. &Mean is the unweighted mean 
coverage purchased in TLUs, conditional on purchasing IBLI.   

 

 

 

 

 

TABLE 2. HOUSEHOLD IBLI PURCHASE PATTERNS, BY SALES WINDOW 

Sales window New1 Replacement2 Augmenting3 Holding4 Reenter5 Lapsed6 Total7 

J-F 2010 225 0 0 0 0 0 225 

J-F 2011 67 60 0 0 0 165 292 

A-S 2011 66 0 31 96 21 144 358 

A-S 2012 19 25 0 0 33 300 377 

Notes: We use the balanced panel of 832 households in this table to track household purchase behavior over time. Therefore, columns do not sum 

to the totals reported in Table 1. 1First time purchasers. 2Replaced a policy about to expire. 3Purchased additional coverage that overlapped with 
existing coverage. 4No purchase but had existing coverage. 5Let policy lapse for at least one season but purchased this season. 6Past policies have 

lapsed and did not purchased additional coverage. 7Total number of households that have purchased to date.   
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TABLE 3. THE AVERAGE OBSERVED DESIGN ERROR IN EACH DIVISION AT EACH SALES PERIOD 

Sales Seasons  Observed Average Estimated Design Error (%) 

Design Risk Observations Central/Gadamoji Laisamis Loiyangalani Maikona 

J-F 2010 - 0 0 0 0 

J-F 2010 LRLD 2010 4.50 11.73 10.22 3.34 

A-S 2011 LRLD 2010, SRSD 2010 7.20 11.07 12.90 5.22 

A-S 2012 LRLD 2010, SRSD 2010, LRLD 2011, SRSD11 2.07 1.24 7.45 1.91 

Notes: LRLD and SRSD refer to the long rain/long dry and short rain/short dry season respectively. The observed average estimated design error 

is the mean difference between covariate loss rate and the predicted loss rate (index) during previous seasons with potential IBLI coverage.  

 

 

 

 

 

TABLE 4. THE IMPACT OF THE RANDOMIZED EXTENSION GAME ON UNDERSTANDING OF THE IBLI CONTRACTS 

 Not game participant Game participant   

IBLI Knowledge: Mean Std. Err. Mean Std. Err. Difference t-test 

Full Sample (N=832) 1.72 0.065 2.22 0.086 0.50 4.60*** 

Never Purchased (N=450) 1.50 0.085 2.05 0.123 0.54 3.63*** 

Notes: The game was played in January 2010. The scores above reflect the number of correct answers to survey questions testing household 

understanding of IBLI contract details. Significance is indicated by: *** p<0.01, ** p<0.05, * p<0.1.  

  

 

 

 

 

 

TABLE 5.RANGELAND CONDITIONS DURING EACH SALES WINDOW AS PREDICTORS OF FINAL INDEX VALUE  

Variable Index Index Index 

Pre-Czndvi -0.0067**  -0.0059*** 

 (0.0026)  [0.0001] 

Expected Rangeland Condition1:    
Good  -0.0790*** -0.0525*** 

  [0.0042] [0.0038] 
Normal  -0.0470*** -0.0387*** 

  [0.0040] [0.0037] 

District Fixed Effects:    
Laisamis -0.0399 -0.0015 -0.0291*** 

 (0.0698) [0.0019] [0.0014] 

Loiyangalani -0.0473 -0.0368*** -0.0424*** 
 (0.0692) [0.0016] [0.0011] 

Maikona -0.0114 -0.0026* -0.0134*** 

 (0.0694) [0.0016] [0.0011] 
    

Constant 0.1009* 0.1727*** 0.1365*** 

 (0.0502) [0.0031] [0.0029] 
    

Observations 16 3,696 3,669 

R-squared 0.3945 0.1167 0.3910 

Notes: Four seasons’ data for four divisions with Central & Gadamoji division dummy omitted. 1The expected conditions variables are the 

division-season average of a set of dummy variables for expected conditions are: good, normal, or bad. Expected conditions=Bad is the omitted 
category. Standard errors in parentheses. Robust and clustered standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1.  
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TABLE 6. AVERAGE MARGINAL EFFECTS (AME) ON IBLI UPTAKE, FROM PROBIT 

  Pooled Conditional FE 

VARIABLES Coefficient Std. Err. Coefficient Std. Err. 

Household Period-Specific Characteristics: 

Dependency Ratio -0.0922* (0.0536) 0.0121 (0.0888) 
Social Groups L 0.0270** (0.0105) -0.0004 (0.0118) 

Asset Index L -0.0683*** (0.0261) -0.0729** (0.0290) 

Ln(Income) L 0.0039 (0.0077) -0.0005 (0.0060) 
Ratio income livestock L -0.0667* (0.0341) -0.0335 (0.0331) 

TLU L 0.0002 (0.0010) 0.0019** (0.0010) 

Livestock Mortality Rate L 0.0033 (0.0378) 0.0289 (0.0386) 
Savings (10TLU) L -0.0358 (0.0345) -0.0481 (0.0402) 

HSNP L 0.0525** (0.0231) 0.0558** (0.0224) 

Household Average Characteristics:     
Dependency Ratio   -0.1434** (0.0583) 

Social Groups    0.0570*** (0.0176) 

Asset Index    -0.0089 (0.0204) 
Ln(Income)   0.0041 (0.0089) 

Ratio Income Livestock    -0.0207 (0.0454) 

TLU    -0.0010 (0.0007) 
Livestock Mortality Rate    -0.1084 (0.2105) 

Savings (10TLU)    -0.0840 (0.0690) 

Expected Rangelands: Good#   -0.0599 (0.0666) 
Expected Rangelands: Normal#   -0.0746 (0.0657) 

Prospective Adverse Selection:     

Expected conditions: Good# -0.0514** (0.0231) -0.0311 (0.0243) 
Expected conditions: Normal# -0.0219 (0.0218) 0.0007 (0.0225) 

Pre-CZNDVI -0.0010 (0.0014) -0.0009 (0.0013) 

Division Livestock Mortality 0.0570*** (0.0203) 0.0577*** (0.0198) 
Division Risk -0.0522** (0.0210) -0.0589*** (0.0207) 

Division Correlation 0.2814* (0.1636) 0.2964* (0.1671) 

Product Related Characteristics :     
Existing IBLI Coverage 0.0239 (0.0482) 0.0172 (0.0497) 

Risk -0.6914*** (0.2416) -0.3257 (0.3505) 

Correlation 0.0064 (0.0267) 0.0090 (0.0272) 
Extension Game 0.0043 (0.0220) 0.0104 (0.0215) 

Ln(price) -0.0234 (0.0473) -0.0289 (0.0437) 

Observed Design Error (ODE) -0.0080*** (0.0025) -0.0073*** (0.0025) 
Coupon Dummy 0.1779*** (0.0341) 0.1715*** (0.0304) 

     
Observations 3,292  3,292  

F-statistic 4.11  5.10  

P-value (model) 0.00  0.00  

Notes: Additional covariates not listed above include age, age2, average age (Conditional FE model), gender, education, level of risk aversion, 

HSNP Village and a constant. L Variable is lagged one period. #Omitted variable is Expected Conditions= poor. Robust and clustered standard 
errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.   

 

 

 

 

TABLE 9. AME OF THE INTERACTED VARIABLES ON THE LIKELIHOOD OF PURCHASING IBLI  

 
AME Std. Err. t P>t Confidence Interval 

Price = Observed Design Error      

Mean-1 SD -0.003 0.003 -1.150 0.252 -0.009 0.002 

Mean Price -0.009 0.003 -3.540 0.000 -0.014 -0.004 

Mean +1SD -0.014 0.004 -3.770 0.000 -0.022 -0.007 

       

Observed Design Error= Price      

Mean-1 SD 0.048 0.052 0.930 0.353 -0.054 0.150 

Mean ODE -0.025 0.043 -0.580 0.565 -0.108 0.059 

Mean +1SD -0.079 0.047 -1.690 0.092 -0.171 0.013 
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TABLE 10. AVERAGE MARGINAL EFFECTS (AME) ON LEVEL OF PURCHASE, CONDITIONAL ON PURCHASE 

  Pooled Conditional FE 

VARIABLES Coefficient Std. Err. Coefficient Std. Err. 

Household Period-Specific Characteristics:    

Dependency Ratio -0.3643 (0.2270) -0.0773 (0.6169) 
Social Groups L 0.0400 (0.0464) -0.0082 (0.0487) 
Asset Index L 0.1514 (0.1021) 0.2329** (0.1019) 

Ln(Income) L 0.0230 (0.0319) 0.0419* (0.0240) 
Ratio Income Livestock L -0.3690*** (0.1289) -0.4424*** (0.1605) 
TLU L 0.0050 (0.0040) 0.0106** (0.0054) 
Livestock Mortality Rate L 0.0061 (0.1817) -0.0091 (0.1696) 
Savings (10TLU) L 0.1428 (0.1466) 0.2676 (0.1982) 
HSNP L -0.0684 (0.0932) -0.1545 (0.1076) 
Household Average Characteristics:     

Dependency Ratio   -0.4075* (0.2449) 
Social Groups    0.0998 (0.0681) 
Asset Index    0.1970** (0.0813) 
Ln(Income)   0.0189 (0.0330) 
Ratio Income Livestock    -0.0111 (0.1900) 
TLU    0.0004 (0.0049) 
Livestock Mortality Rate    0.0523 (0.7496) 
Savings (10TLU)    0.0861 (0.2566) 
Expected Rangelands: Good# 

  -0.6382*** (0.2469) 
Expected Rangelands: Normal# 

  -0.5968** (0.2455) 
Prospective Adverse Selection:     

Expected Conditions: Good# -0.3915*** (0.0869) -0.2709*** (0.0946) 
Expected Conditions: Normal# -0.3270*** (0.0933) -0.2118** (0.0842) 
Pre-CZNDVI -0.0037 (0.0047) -0.0100* (0.0056) 
Division Livestock Mortality -0.1804** (0.0829) -0.1865** (0.0767) 

Division Risk 0.1682* (0.0886) 0.2002** (0.0842) 
Division Correlation -0.7921 (0.8214) -0.9204 (0.7385) 
Product Related Characteristics :     

Existing IBLI Coverage -0.1203 (0.0979) -0.2114** (0.1037) 
Risk -1.1626 (1.0886) -0.0205 (1.3111) 
Correlation -0.1599* (0.0935) -0.1397 (0.1035) 
Extension Game 0.0156 (0.0686) 0.0267 (0.0707) 
Ln(Price) -0.4790*** (0.1214) -0.4275*** (0.1342) 
Observed Design Error (ODE) -0.0070 (0.0124) -0.0062 (0.0127) 
     

Observations 3,292  3,292  

F-statistic 4.11  5.10  

P-value (model) 0.00  0.00  

Notes: Additional covariates not listed above include age, age2, average age (Conditional FE model), gender, education, level of risk aversion, 

HSNP Village, the Inverse Mills ratio, and a constant. L Variable is lagged one period. # Omitted variable is Expected conditions=poor. Robust 

and clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 

 

 

 

TABLE 11. AME OF THE INTERACTED VARIABLES ON IBLI PURCHASE LEVEL, CONDITIONAL ON PURCHASING  

  AME Std. Err. t P>t Confidence Interval 

Observed Design Error= Price 
   

  Mean-1 SD -0.393 0.191 -2.050 0.040 -0.768 -0.017 

Mean ODE -0.424 0.138 -3.070 0.002 -0.695 -0.153 

Mean +1SD -0.455 0.129 -3.520 0.000 -0.709 -0.201 

       Extension Game Correlation(M,CL) 
   

  No -0.247 0.131 -1.880 0.060 -0.505 0.010 

Yes 0.218 0.153 1.420 0.155 -0.082 0.517 
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Appendix A: Key Features of Index Based Livestock Insurance (IBLI) Contract 

 

The risk: 

Index based Livestock Insurance (IBLI) is a product that is designed to protect against drought-related 

livestock mortality. 

 

The index:  

As described in Chantarat et al. (2013), the index in IBLI is the predicted livestock mortality rate. It is 

calculated by using a measure of vegetation coverage that is measured by satellite-based sensors, called 

the Normalized Difference Vegetation Index (NDVI). This vegetation measure is fed into a statistical 

response function that was constructed by relating historic drought related livestock mortality data to 

various transformation of the historic NDVI. The parameters estimated from the historic data are used to 

predict drought related livestock mortality from sequences of observed NDVI values. 

 

Contract strike level: 

The index threshold above which payouts are made is called the strike level. The strike level for IBLI is 

15%. In other words, IBLI will compensate if predicted livestock mortality is above 15%. 

 

Geographical coverage of contract and the index:  

Marsabit District is covered by two separate contracts. There is an Upper Marsabit contract consisting 

of Maikona and North Horr divisions, and a Lower Marsabit contract consisting of Central, Gadamoji, 

Laisamis, and Loiyangalani divisions (Figure A1). 

 

The index – predicted livestock mortality – computed and reported at the division level. The five 

division—North Horr, Maikona, Loiyangalani, Laisamis and Central—could each have a different index 

level. Because insurance payments are made according to the index level, this means that IBLI may make 

different indemnity payments across divisions. Every insurance policy holder within the same division, 

however, will receive the same rate of insurance payment, provided that the index is above the strike. 

 
 

Upper Marsabit Contract:  

Lower Marsabit Contract: 

  

 
FIGURE A1. IBLI GEOGRAPHICAL COVERAGE 
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Contract premium rates and indemnity payments: 

Premiums are different between the two contract regions to reflect their differences in historical risk of 

livestock mortality. Premium rates are reported as a percent of the value of insured livestock. From first 

initial sales in January of 2010 through 2012, the unsubsidized and loaded premiums were 5.4% and 9.2% 

in the lower and upper IBLI contract regions, respectively. At that time, those premiums were subsidized 

by about 40% so that pastoralists in the lower and upper regions purchased IBLI coverage at a rate of 5.5% 

and 3.25%, respectively.  

 

The standard livestock types for a pastoral herd will be covered: camels, cattle, sheep and goats.  

To arrive at a value for the insured herd, the four livestock types will be transformed into a standard 

livestock unit known as a Tropical Livestock Unit (TLU). TLU is calculated as follows: 1 Camel = 1.4 

TLU, 1 Cattle = 1 TLU and 1 goat/sheep = 0.1 TLU. Once total TLU are calculated, the value of the total 

herd is computed based on average historical prices for livestock across Marsabit, at a set price per TLU 

insured of Ksh 15,000. The premiums are then applied to the insured value to arrive at the amount one 

pays for IBLI coverage for the year. 

 

There are no indemnity payments if the index falls below the strike. If the index exceeds the strike, 

indemnity payments are calculated as the product of the value of the insured herd and difference between 

the predicted livestock mortality and the deductible. 

 

Time Coverage of IBLI: 

The figure below presents the time coverage of the IBLI. The annual contract begins at the close of a 

marketing window, either March 1
st
 or October 1

st
. Contracts are sold only within a two month (January-

February of August-September) time frame as the rainy season that typically begins right after that 

window may give the potential buyer information about the likely range conditions of the season to come 

that would affect purchase decisions. This annual contract has two potential payout periods: at the end of 

the long dry season based on the October 1
st
 index reading and at the end of the short dry season based on 

the March 1
st
 index readings. At these points of time, if the index exceeds 15%, active policy holders 

receive an indemnity payment. 

 

 
 

FIGURE A2. TEMPORAL STRUCTURE OF IBLI CONTRACT 
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Appendix B. Description of the Key Variables and Analysis of Attrition 

The data used in this research was collected by the IBLI field team in Marsabit, Kenya.  The data was 

collected in four annual survey rounds in October and November. The 16 sublocations included in the 

survey were selected intentionally to represent a wide range of market and ecological conditions.  

Proportional sampling was done at the community level and stratified random sampling was done within 

communities. The survey tool included a wide variety of questions on household’s demographic and 

economic characteristics. It emphasizes livestock related data, such as herd composition and detailed 

monthly livestock intake and offtake. The variable construction and summary statistics are found in 

Tables B1 and B2.  

  

 
TABLE B1. DESCRIPTION OF KEY VARIABLES 

Variable Data 

Frequency 

Description 

Male Annual Sex of the head of household (1=male). 

Age of Head  Annual Age of the head of household (years). 

Education Annual Maximum education level achieved within the household (years). 

Risk Aversion: 

Neutral 

Constant Following Binswanger (1980), households were allowed to choose from a menu of real gambles 

in which level of risk and expected outcome were positively correlated. Each household 

participated in the experiment once during their first survey round. Households are then placed 

into a risk aversion category according to the lottery that they choose. The categories are risk 

neutral, moderately risk averse, and extremely risk averse. 

Risk Aversion: 

Moderate 

Constant 

Risk Aversion: 

Extreme 

Constant 

Dependency Ratio Annual Ratio of members that are younger than 15 years, older than 55 years, disabled, or clinically ill. 

Social Groups Annual A count of the number of informal groups in which the household participates. This variable is 

lagged by one period in the analysis. 

Asset Index Annual The asset index is generated by a factor analysis performed on more than 30 variables capturing 

asset ownership from the following categories: productive assets, household construction 

materials, household facilities, cooking and lighting fuels, and consumer durables. This variable 

is lagged by one period in the analysis. 

Ln income Seasonal Ln(1+ average monthly income) where income is the sum of the value of earnings, milk 

production, livestock slaughter, and livestock sales. Earnings include earnings from sale of 

crops, salaried employment, pensions, casual labor, business, petty trading, gifts, and 

remittances, expressed in Kenyan shillings (Ksh). This variable is lagged by one period. 

Ratio Livestock 

Income 

Seasonal Ratio of income that is generated through milk production, livestock slaughter or livestock sales. 

This variable is lagged by one period in the analysis. 

Herd Size Seasonal Average herd size during the sales window (1 TLU=0.7 camels=1 cattle=10 sheep=10 goats). 

This variable is lagged by one period in the analysis. 

Livestock Mortality 

Rate 

Seasonal Seasonal livestock mortality rate is calculated by dividing total losses within a season by the 

total herd owned within that season. Total herd owned is the sum of beginning herd size and all 

additions to the herd during the season. This variable is lagged by one period in the analysis. 

Risk Constant Within household variance in livestock mortality rate 

Savings Annual A dummy variable that is equal to one if the household has cash savings sufficient to purchase 

IBLI insurance for ten TLUs. Savings are estimated by summing the total monies held at home, 

in merry-go-round groups, in micro-finance institutions, in savings and credit cooperatives, in 

bank accounts, with traders or shops, and in M-Pesa (a mobile-based micro-finance institution) 

accounts. This variable is lagged by one period in the analysis. 

HSNP  Seasonal Participation in HSNP (1=participant). This variable is lagged by one period. 

HSNP Community Seasonal Community is an HSNP target community (1=target community). 

Expected 

Rangeland: 

Good/Normal/Poor 

Annual A set of three dummy variables reflecting that the respondent’s prediction of coming season’s 

rangeland conditions were: much above normal or above normal (Good=1), normal (Normal=1), 

or somewhat below normal or much below normal (Poor=1). 

Ln(Effective Price) Seasonal Log of the price for one TLU of coverage after coupon discounts (ln(Ksh)). 

Observed Design 

Error 

Seasonal The mean observed design error (%). 

(Table continues) 
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(Continued) 
Correlation(M,CL) Constant The correlation between individual and covariate seasonal livestock mortality rates. For 

households with no variation in livestock mortality rate, this is set to zero. 

IBLI game Constant Household participated in the IBLI educational game in 2010 (1=participant). 

IBLI coverage Seasonal Household has existing IBLI coverage (1=true). 

Coupon Seasonal Household received a discount coupon (1=true). 

Pre-Czndvi Seasonal Preceding season’s cumulative standardized normalized difference vegetation index.  

Division Livestock 

Mortality 

Division 

Constant 

The eight-period average loss rate of all households within each division.  

Division Risk Division 

Constant 

The within-household variance in loss rate averaged across all households in each division. 

Division 

Correlation 

Division 

Constant 

The within-household correlation between individual loss rate and covariate loss rate averaged 

across all households in each division. 

 

 

Table B2 provides summary statistics of the key variables, distinguishing between those that purchase 

and those that do not purchase IBLI. IBLI purchasers have lower dependency ratios, face somewhat less 

livestock mortality risk, are less likely to be extremely risk averse in favor of moderately risk averse, and 

more likely to have received a discount coupon in at least one of the sales windows. But, the two groups 

seem to be mostly similar as the discount coupons directly impact effective price and indirectly IBLI 

coverage via price. 

 

 
TABLE B2. SUMMARY STATISTICS 

 

Never Purchase 

(N=450) 

Did Purchase 

(N=382)    

Variable Mean Std. Err. Mean Std. Err. Difference t-stat 

Male 0.57 0.03 0.63 0.04 0.06 1.09 

 Age 47.10 1.05 48.67 1.80 1.57 0.76 

 Education 3.75 0.25 4.01 0.37 0.26 0.59 

 Risk Aversion:        

Neutral 0.26 0.03 0.25 0.04 -0.01 -0.14 

 Moderate 0.41 0.04 0.53 0.05 0.12 2.05 ** 

Extreme 0.33 0.03 0.22 0.04 -0.11 -2.28 ** 

Dependency Ratio 0.63 0.01 0.58 0.02 -0.04 -2.08 ** 

Social Groups 0.51 0.04 0.66 0.05 0.15 2.42 ** 

Asset Index -0.14 0.05 -0.11 0.06 0.03 0.32 

 Income  7,190 465 6,997 454 -193 -0.30 

 Ratio Livestock Income  0.63 0.02 0.63 0.03 0.00 0.11 

 Herd Size 15.01 1.02 13.06 1.00 -1.94 -1.35 

 Livestock Mortality Rate 0.15 0.01 0.13 0.01 -0.02 -2.80 *** 

Savings 0.08 0.01 0.08 0.01 0.00 -0.16 

 HSNP 0.27 0.02 0.26 0.03 -0.01 -0.27 

 HSNP Community 0.74 0.03 0.65 0.04 -0.08 -1.80 * 

Expected Rangeland Conditions:        

Good 0.45 0.01 0.45 0.02 0.00 0.08 

 Normal 0.34 0.01 0.31 0.02 -0.03 -1.34  

Poor 0.21 0.02 0.24 0.02 0.03 0.97  

Pre-Czndvi -2.77 0.09 -2.99 0.12 -0.22 -1.43  

IBLI Coverage 0.00 0.00 0.13 0.00 0.13 35.24 *** 

Risk (X 100) 5.84 0.52 4.05 0.33 -1.79 -2.92 *** 

Correlation(M, CL) 0.44 0.02 0.46 0.03 0.02 0.43  

IBLI Game 0.24 0.03 0.24 0.03 0.00 -0.02  

Ln(Effective Price) 6.22 0.01 6.14 0.01 -0.07 -4.09 *** 

Observed Design Error (%) 2.29 0.07 2.51 0.07 0.21 2.12 ** 

Coupon 0.55 0.02 0.64 0.02 0.09 2.78 *** 

Notes: This table only includes the 832 balanced panel households in order to correctly categorize the “Never Purchase” households and maintain 

consistency in the periods and shocks captured in the summary statistics. *** p<0.01, ** p<0.05, * p<0.1. Source: Authors’ calculations. 
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The asset index is constructed by performing a factor analysis on a set of variables meant to capture 

variation in household wealth.  This approach is discussed in Sahn and Stifle (2000). The variables focus 

on five general categories: household construction materials, household facilities, cooking and lighting 

fuels, and household durables. Because the list of possible durables is extremely long (more than 70), they 

are aggregated by value (small, medium, large) and use (productive, other) except for large assets which 

are divided into those with motors and those without. Categorization was performed by the authors and is 

clearly not the only method for dividing or aggregating the long list of assets. When in doubt as to which 

category to place an item, we relied on the frequency of ownership to guild our decision. Table B3 

includes the descriptions of each variable and the factor loadings, which were estimated using the 

variables listed and division year fixed effects.  

 

TABLE B3. ASSET INDEX 

Variable Description 

Factor 

Loading 

Improved Wall =1 if walls are stone, brick, cement, corrugated iron, mud plastered with cement, or tin 0.132 

Improved Floor =1 if floor is cement, tile, or wood 0.130 

Improved Toilet =1 if toilet is flush or covered latrine 0.128 

Improved Light  =1 if main source of lighting is electricity, gas, solar 0.118 

Improved cooking 

appliance  

=1 if main cooking appliance is jiko, kerosene stove, gas cooker, or electric cooker 
0.077 

Improved Fuel  =1 if main cooking fuel is electricity, paraffin, gas or charcoal 0.064 

Improved furniture  Total number of the following assets: metal trunks, mosquito nets, modern chairs, modern tables, 

wardrobes, mattresses and modern beds 
0.165 

Water Source: Open =1 if main water source is river, lake, pond, unprotected well or unprotected spring 0.004 

Water Source: Protected =1 if main water source is protected spring or protected well 0.004 

Water Source: Borehole =1 if main water source is a borehole -0.008 

Water source: Tap =1 if main water source is a public or private tap 0.040 

Water Source: Rainwater 

catchment 

=1 if main water source is a rainwater catchment (usually cement or plastic) 
0.079 

Water Source: tanker =1 if main water source is water tanker (usually associated with NGO and food aid activities during 
drought) 

0.021 

Education Maximum household education 0.121 

Total cash savings Total monies held at home, in merry-go-round groups, in micro-finance institutions, in savings and 
credit cooperatives, in bank accounts, with traders or shops, and in M-Pesa (a mobile-based micro-

finance institution) accounts. 

0.085 

Land Hectares owned 0.051 

Irrigation =1 if household owns irrigated land 0.033 

Poultry Number of chickens 0.081 

Donkeys Number of donkeys 0.018 

Very small Total number of the following assets: gourds, cups, scissors, and needle and thread sets. 0.040 

Small tools Total number of the following assets: anvils, panier, sickle, pickaxe, hoe, spade, machetes, spears, bows, 

club, chisels, hammers, files, fishing lines. 
0.126 

Small other Total number of the following assets: musical instruments, traditional tools, bells, knifes, basins, 
sufirias, thermoses, buckets, wristwatches, jewelry  

0.053 

Medium tools Total number of the following assets: Wheelbarrows, fishing nets, mobile phones, washing machines, 

spinning machines, weaving machines, sewing machines, bicycles, and plows. 
0.164 

Medium other Total number of the following assets: water tank, jerry can, paraffin lamp, water drum, kerosene stove, 
charcoal stoves, ovens and radios.  

0.135 

Large  Total number of the following assets: animal carts, shops, stalls and boats. 0.037 

Large with motor Total number of the following assets: cars, motorbikes and tractors. 0.089 

Notes: Division*period dummies included in the factor analysis. 

 

 

Attrition rates averaged about 4% per year and the rate of attrition was similar between survey rounds. 

Table B4 provides details on the differences between full balanced panel households and those that left. 

Note that participation in the IBLI extension game, the discount coupon, effective price, expected 

conditions, and design error are all related to time so that we expect there to be systematic differences in 
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those variables between those whom we observe in all periods and those that exit, due purely to 

exogenous factors. 

  
TABLE B4. SUMMARY STATISTICS FOR THOSE THAT STAYED AND THOSE THAT LEFT/ENTERED THE SURVEY 

  
Full Panel Left/Entered 

      
(N=832) (N=94) 

Variable Mean Std. Err. Mean Std. Err. Difference t-stat 

Gender  0.60 0.03 0.67 0.06 0.07 1.11 

 Age 4.78 0.10 4.73 0.18 -0.05 -0.24 
 Education 3.86 0.21 4.24 0.49 0.37 0.70 

 Risk Aversion: Neutral 0.26 0.02 0.33 0.05 0.08 1.35 

 Risk Aversion: Moderate 0.46 0.03 0.35 0.05 -0.11 -1.96 * 
Risk Aversion: Extreme 0.28 0.03 0.32 0.06 0.04 0.63 

 Dependency Ratio 0.61 0.01 0.58 0.02 -0.02 -1.03 

 Social Groups 0.58 0.03 0.57 0.08 -0.01 -0.17  
Asset Index -0.12 0.04 -0.18 0.08 -0.06 -0.68 

 Income (Kshs monthly) 7,103 325 7,266 939 164 0.16 

 Ratio Livestock Income  0.63 0.02 0.52 0.04 -0.11 -2.43 ** 
Herd Size 14.13 0.72 20.55 2.68 6.42 2.31 ** 

Livestock Mortality Rate 0.14 0.00 0.16 0.01 0.02 1.67 * 

Savings 0.08 0.01 0.10 0.03 0.02 0.65 
 HSNP 0.26 0.02 0.17 0.03 -0.09 -2.36 ** 

Expected Conditions: Good 0.45 0.01 0.68 0.03 0.22 6.77 *** 

Expected conditions: Normal 0.32 0.01 0.18 0.02 -0.14 -5.87 *** 
Expected Conditions: Poor 0.22 0.01 0.14 0.02 -0.08 -3.06 *** 

Risk 0.05 0.00 0.06 0.01 0.01 1.46  
Correlation(M, CL) 0.45 0.02 0.68 0.05 0.23 4.38 *** 

IBLI game 0.24 0.02 0.22 0.05 -0.02 -0.28  

Ln(effective price) 6.18 0.01 6.31 0.03 0.12 4.04 *** 
Observed Design Error (%) 2.39 0.05 1.34 0.20 -1.05 -5.16 *** 

Coupon 0.59 0.02 0.50 0.05 -0.10 -1.79 * 

 

 

The survey teams used a census of households with herd sizes in order to replace exit households with 

households from the same wealth stratum. Thus we expect that the exiting and replacement households 

are similar. Descriptive statistics are found in Table B5. Most of the systematic differences are likely due 

to duration of survey participation and likelihood of participating during certain periods rather than actual 

differences between households. The variables that are most worrisome are herd size, education and ratio 

of income from livestock, which indicate that replacement households are less educated, have much 

smaller herds, and are more dependent on those herds than those that left. This is most likely a result of 

over-sampling in the wealthy household strata, which leaves fewer eligible replacements for attrited 

wealthy households.
34

 

 
  

                                                      

34 Large portions of the middle and high wealth strata were sampled in some smaller communities.  In such cases, finding 

within strata replacement households can be difficult. Pastoral mobility and demand for herding labor far from households and 

community centers further exacerbates the challenges of replacing households from an already attenuated roster.  
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TABLE B5. SUMMARY STATISTICS FOR ENTRY VS. EXIT HOUSEHOLDS 

  
Exit Enter 

    
 (N=91) (N=91) 

Variable Mean Std. Err. Mean Std. Err. Difference t-stat 

Gender  0.63 0.07 0.75 0.09 0.12 1.09 

 Age 4.69 0.23 4.85 0.33 0.16 0.40 

 Education 4.71 0.59 2.96 0.97 -1.75 -1.55 
 Risk Aversion: Neutral 0.28 0.06 0.48 0.11 0.20 1.61 

 Risk Aversion: Moderate 0.35 0.06 0.35 0.10 0.00 0.02 

 Risk Aversion: Extreme 0.37 0.07 0.17 0.07 -0.20 -2.02 ** 
Social Groups 0.60 0.03 0.53 0.04 -0.07 -1.34  

Dependency Ratio 0.54 0.09 0.63 0.14 0.08 0.49 

 Asset Index -0.15 0.10 -0.29 0.14 -0.14 -0.83 
 Income (Ksh monthly) 7,804 1,304 5,829 722 -1,975 -1.32 

 Ratio livestock Income  0.46 0.05 0.69 0.05 0.23 3.13 *** 

Herd Size 24.18 3.57 10.84 1.89 -13.34 -3.29 *** 

Livestock Mortality Rate 0.16 0.02 0.15 0.02 -0.01 -0.44 

 Savings 0.12 0.05 0.05 0.03 -0.06 -1.15 
 HSNP 0.15 0.04 0.23 0.07 0.08 0.96 

 Expected Conditions: Good 0.70 0.04 0.62 0.06 -0.09 -1.19 *** 

Expected Conditions: Normal 0.17 0.03 0.20 0.04 0.03 0.51 *** 
Expected Conditions: Poor 0.13 0.02 0.19 0.05 0.06 1.04  

Risk 0.07 0.01 0.05 0.01 -0.02 -0.89  

Correlation(M, CL) 0.73 0.06 0.54 0.10 -0.18 -1.56  
Ln(Effective Price) 0.30 0.07 0.01 0.01 -0.29 -4.24 *** 

Observed Design Error 6.35 0.04 6.18 0.05 -0.17 -2.80 *** 

IBLI Game 0.61 0.14 3.31 0.37 2.70 6.85 *** 
Coupon 0.65 0.07 0.30 0.04 -0.35 -4.32 *** 
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Appendix C: Validity of Excludable Variable 

We include a dummy variable to indicate that the household received a discount coupon in the first 

stage selection equation but exclude it from the demand equation. The selection equation estimates found 

in Table E1 and Table 8 clearly indicate that receiving a coupon has a large, positive, and statistically 

significant impact on the likelihood of purchasing IBLI, even after accounting for size of the discount the 

coupon offered (β=0.9866, p<0.01). This effect seems purely a randomized treatment that should be 

irrelevant to purchase volume conditional on uptake. So that variable seems a strong candidate for 

exclusion from the second stage estimation of uptake volume. 

 

Although there is no agreed upon method for testing excludability of a candidate instrument and it is 

rarely be done with selection models, we venture to provide some statistical support that the exclusion of 

that indicator variable does not cause bias in the demand estimates. Because we only have one exclusion 

variable, our tests rest on identification through nonlinearity on the probit model, which is likely to be 

very weak. First, we include the coupon dummy variable in the second stage regression. The coefficient 

on the coupon dummy is negative and statistically insignificant (beta=-0.122, p-value=0.366). Comparing 

this set of estimates with those estimated with the coupon dummy excluded, we fail to reject the null 

hypothesis that the joint change to remaining estimates is zero (χ
2
(45)=1.62, p-value=1.00). More 

specifically, we would expect a large change between the two models in the estimated parameter on the 

effective price if the receiving a coupon played an important role in determining levels of demand beyond 

providing a price discount. Testing for a difference in the two price parameter estimates, we cannot reject 

the null of no change (χ
2
(1)=0.87, p-value=0.352). Of course, this does not mean that the variable should 

be omitted, only that it has little independent effect on the level of purchase and does not result in large 

shifts in parameter values when included. 

 

We can also check if the errors estimated by the demand equation without the coupon dummy vary by 

coupon status. Because selection is controlled for through the inverse Mills ratio and coupons were 

randomly distributed, there should be no omitted variable bias in the demand equation parameter 

estimates except potentially in effective price, but that bias was ruled out in step one. A t-test of the 

demand residuals over the coupon status does not reject the null of equal errors between those who 

received a coupon and those who did not (difference=0.054, t-statistic(529)=0.756). 

  



 

46 

 

Appendix D. Coefficient Estimates of Uptake and Demand for ILBI 

TABLE D1. COEFFICIENT ESTIMATES FOR PROBIT SELECTION  

  Pooled Conditional FE 

VARIABLES Coefficient Std. Err. Coefficient Std. Err. 

Household Period-Specific Characteristics:    

Male 0.1493 (0.1006) 0.1412 (0.1018) 

Dependency Ratio -0.4211* (0.2449) 0.0565 (0.4149) 
Social Groups L 0.1232*** (0.0475) -0.0018 (0.0553) 

Asset Index L -0.2876*** (0.1069) -0.3400** (0.1323) 

Asset Index2 L 0.0728*** (0.0266) 0.1703* (0.0938) 
Ln(income) L -0.0632 (0.0561) -0.0049 (0.0264) 

Ln(income)2 L  0.0053 (0.0052) 0.0078 (0.0053) 

Ratio income livestock L -0.3043** (0.1550) -0.1567 (0.1553) 

TLU L 0.0030 (0.0058) 0.0087* (0.0045) 

TLU2 L -0.0001 (0.0001) -0.0002 (0.0001) 

Livestock Mortality Rate L 0.0149 (0.1728) 0.1351 (0.1795) 
Savings (10TLU) L -0.1635 (0.1579) -0.2248 (0.1879) 

HSNP L 0.2397** (0.1061) 0.2608** (0.1057) 

Household Averages Characteristics:     
Dependency Ratio   -0.6699** (0.2723) 

Social Groups    0.2663*** (0.0811) 

Asset Index    -0.0418 (0.0950) 
Ln(income)   0.0193 (0.0414) 

Ratio income livestock    -0.0967 (0.2127) 

TLU    -0.0046 (0.0032) 
Livestock Mortality Rate    -0.5062 (0.9822) 

Savings (10TLU)    -0.3923 (0.3225) 

Expected Rangelands: Good#   -0.2798 (0.3097) 
Expected Rangelands: Normal#   -0.3487 (0.3070) 

Prospective Adverse Selection:     

Expected conditions: Good# -0.2348** (0.1040) -0.1451 (0.1135) 
Expected conditions: Normal# -0.0999 (0.0991) 0.0034 (0.1050) 

Pre-CZNDVI -0.0045 (0.0062) -0.0041 (0.0061) 

Division Livestock Mortality 0.2603*** (0.0907) 0.2693*** (0.0913) 
Division Risk -0.2381** (0.0945) -0.2749*** (0.0959) 

Division Correlation 1.2845* (0.7437) 1.3848* (0.7789) 

Product Related Characteristics :     
Existing IBLI Coverage 0.1089 (0.2207) 0.0806 (0.2326) 

Risk -3.1565*** (1.0903) -1.5218 (1.6403) 

Correlation 0.0008 (0.1388) 0.0091 (0.1428) 
Extension Game -0.0360 (0.1444) -0.0168 (0.1452) 

Correlation X Game 0.1197 (0.2712) 0.1401 (0.2716) 

Ln(price) 0.2732 (0.2254) 0.2419 (0.2181) 
Observed Design Error (ODE) 0.4001** (0.1592) 0.3990** (0.1727) 

Ln(price) X ODE -0.0736*** (0.0269) -0.0730** (0.0292) 

Coupon Dummy 0.8123*** (0.1472) 0.8011*** (0.1384) 
     

Observations 3,292  3,292  

F-statistic 4.11  5.10  
P-value (model) 0.00   0.00  

Notes: Additional covariates not listed above include age, age2, average age (for the Conditional FE Model), education, level of risk aversion, 

HSNP Village, and a constant. L Variable is lagged one period. #Omitted variable is Expected conditions: poor. Robust and clustered standard 

errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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TABLE D2. ESTIMATED DEMAND COEFFICIENTS, CONDITIONAL ON PURCHASE 

  Pooled Conditional FE 
VARIABLES Coefficient Std. Err. Coefficient Std. Err. 

Household Period-Specific Characteristics:    

Male 0.0597 (0.0829) 0.0883 (0.0829) 
Dependency Ratio -0.3643 (0.2270) -0.0773 (0.6169) 
Social Groups L 0.0400 (0.0464) -0.0082 (0.0487) 

Asset Index L 0.1500 (0.0961) 0.2368** (0.1036) 
Asset Index2 L -0.0046 (0.0235) -0.0659 (0.0687) 
Ln(income) L 0.0821 (0.0592) 0.0454** (0.0226) 
Ln(income)2 L  -0.0038 (0.0050) -0.0044 (0.0054) 
Ratio income livestock L -0.3690*** (0.1289) -0.4424*** (0.1605) 
TLU L 0.0066 (0.0053) 0.0099* (0.0056) 
TLU2 L -0.0001 (0.0001) -0.0002** (0.0001) 
Livestock Mortality Rate L 0.0061 (0.1817) -0.0091 (0.1696) 
Savings (10TLU) L 0.1428 (0.1466) 0.2676 (0.1982) 
HSNP L -0.0684 (0.0932) -0.1545 (0.1076) 
Household Averages Characteristics:     

Dependency Ratio   -0.4075* (0.2449) 
Social Groups    0.0998 (0.0681) 
Asset Index    0.1970** (0.0813) 
Ln(income)   0.0189 (0.0330) 

Ratio income livestock    -0.0111 (0.1900) 
TLU    0.0004 (0.0049) 
Livestock Mortality Rate    0.0523 (0.7496) 
Savings (10TLU)    0.0861 (0.2566) 
Expected Rangelands: Good# 

  -0.6382*** (0.2469) 
Expected Rangelands: Normal# 

  -0.5968** (0.2455) 
Prospective Adverse Selection:     

Expected conditions: Good# -0.3915*** (0.0869) -0.2709*** (0.0946) 
Expected conditions: Normal# -0.3270*** (0.0933) -0.2118** (0.0842) 
Pre-CZNDVI -0.0037 (0.0047) -0.0100* (0.0056) 
Division Livestock Mortality -0.1804** (0.0829) -0.1865** (0.0767) 
Division Risk 0.1682* (0.0886) 0.2002** (0.0842) 
Division Correlation -0.7921 (0.8214) -0.9204 (0.7385) 
Product Related Characteristics :     

Existing IBLI Coverage -0.1203 (0.0979) -0.2114** (0.1037) 
Risk -1.1626 (1.0886) -0.0205 (1.3111) 
Correlation -0.2779** (0.1205) -0.2472* (0.1312) 

Extension Game -0.2157* (0.1106) -0.1840* (0.1113) 
Correlation X Game 0.5103** (0.2057) 0.4648** (0.2139) 
Ln(price) -0.4311** (0.1829) -0.3880* (0.2016) 
Observed Design Error (ODE) 0.0465 (0.1347) 0.0380 (0.1222) 
Ln(price) X ODE -0.0089 (0.0224) -0.0073 (0.0205) 
     

Observations 3,292  3,292  

F-statistic 4.11  5.10  

P-value (model) 0.00  0  

Notes: Additional covariates not listed above include age, age2, average age (Conditional FE Model), education, level of risk aversion, HSNP 

Village, inverse Mills Ratio, and a constant. L Variable is lagged one period. #Omitted variable is Expected conditions: poor. Robust and clustered 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix E: Shapley Goodness of Fit Decomposition 

A Shapley’s goodness of fit (GOF) decomposition is used to determine the level of variation in demand 

that is captured by categories of variables (Kolenikov & Shorrocks 2005; Shapley 1953; Shorrocks 

2013).
35

 The variable categories include: household demographics, household finances, prospective 

intertemporal adverse selection, prospective spatial adverse selection, idiosyncratic risk & knowledge, 

design risk & price, other, and the instrument variable.  A two-stage Heckman approach, rather than the 

maximum likelihood approach used in the main body of the paper, is used here in order to examine the 

contributions of the variable groups in both the uptake and demand analysis. In addition, we use the 

pooled, rather than conditional fixed effects, approach here in order to reduce the computational burden.  

Notice that the pooled and conditional fixed effects estimates are generally very similar.   

 

Tables E1 and E2 include the two-stage estimates and estimated group contributions to each stage’s 

(uptake and level of purchase) GOF.  The pooled maximum likelihood estimates from the Heckman 

selection model (from Table D1 and Table D2) are also included as evidence that the two models result in 

very similar estimates and that the decomposition of the two-stage estimates are likely to be reflective of 

the contributions in the maximum likelihood Heckman model.
36

    

 

Household characteristics clearly play a role in uptake but are unable to account for even half of the 

variation captured by the model (Table E1).  Temporal and spatial adverse selection provide similar 

contributions and their combined impacts are similar to that of the relative importance of covariate risk.  

The three design risk and price variables account for 18% of the Pseudo R
2
 measure, more than any other 

group except for our instrumental variable.       

 

The role of adverse selection in the fit of our model is greater for level of demand than uptake.  

Conversely, the role of design risk and price has fallen considerably.  In addition, income and wealth have 

become much more important while the importance of covariate risk has changes very little.   

 

In summary, the total contribution made by adverse selection and product related characteristics 

towards the GOF are greater than that of a large set of familiar household characteristics in both uptake 

and level of demand models.  Our models would perform much worse with these crucial estimates of 

basis risk and adverse selection. 

 

  

                                                      

35
 We use the STATA user-written command shapley2 (Juárez 2014). 

36
 The ML Heckman estimates are generated in a single step so that we cannot examine the goodness of fit 

contributions in each process separately. 
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TABLE F1. DECOMPOSITION OF PSEUDO R2
 FOR UPTAKE PROBIT 

  Heckman ML Probit  2 Step Probit Shapley Decomposition of Pseudo R2 

A VARIABLES Coefficient Std. Err. Coefficient Std. Err. 

Household Period-Specific Characteristics: 

Demographics: B     12.40% 

Male 0.1493 (0.1006) 0.1492 (0.1038)  

Dependency Ratio -0.4211* (0.2449) -0.4214* (0.2533)  
Social Groups L 0.1232*** (0.0475) 0.1230** (0.0492)  

Financial:     14.42% 

Asset Index L -0.2876*** (0.1069) -0.2875*** (0.1104)  

Asset Index2 L 0.0728*** (0.0266) 0.0728*** (0.0276)  

Ln(income) L -0.0632 (0.0561) -0.0631 (0.0579)  
Ln(income)2 L  0.0053 (0.0052) 0.0053 (0.0054)  

Ratio income livestock L -0.3043** (0.1550) -0.3044* (0.1594)  

TLU L 0.0030 (0.0058) 0.0030 (0.0060)  

TLU2 L -0.0001 (0.0001) -0.0001 (0.0001)  

Livestock Mortality Rate L 0.0149 (0.1728) 0.0147 (0.1781)  

Savings (10TLU) L -0.1635 (0.1579) -0.1631 (0.1645)  
HSNP L 0.2397** (0.1061) 0.2398** (0.1097)  

Prospective Adverse Selection: 

Intertemporal:     2.46% 

Expected conditions: Good# -0.2348** (0.1040) -0.2346** (0.1081)  

Expected conditions: Normal# -0.0999 (0.0991) -0.0997 (0.1022)  
Pre-CZNDVI -0.0045 (0.0062) -0.0045 (0.0064)  

Spatial:     5.12% 

Division Livestock Mortality 0.2603*** (0.0907) 0.2603*** (0.0937)  

Division Risk -0.2381** (0.0945) -0.2381** (0.0974)  

Division Correlation 1.2845* (0.7437) 1.2838* (0.7666)  
Product Related Characteristics : 

Idiosyncratic Risk & Knowledge:    5.46% 
Risk -3.1565*** (1.0903) -3.1567*** (1.1241)  

Correlation 0.0008 (0.1388) 0.0007 (0.1439)  

Extension Game -0.0360 (0.1444) -0.0359 (0.1509)  
Correlation X Game 0.1197 (0.2712) 0.1197 (0.2814)  

Design Risk & Price:     21.13% 

Ln(price) 0.2732 (0.2254) 0.2733 (0.2326)  
Observed Design Error (ODE) 0.4001** (0.1592) 0.4000** (0.1645)  

Ln(price) X ODE -0.0736*** (0.0269) -0.0736*** (0.0278)  

Instrumental Variable:     35.32% 

Coupon Dummy 0.8123*** (0.1472) 0.8124*** (0.1515)  

      

Observations 3,292  3,292   

F-statistic [Wald χ2] 4.11  [165.48]   

P-value (model) 0  0   

Pseudo R2    0.135     

Notes: A The Shapley decomposition is performed on eight groups of variables indicated by the bold labels on the left using the 2-stage probit 

estimates. A group containing existing IBLI coverage and an indicator that the household is in an HSNP targeted community was also included in 

the regressions and decomposition; its Shapley contribution was 3.82%.  B Additional covariates in the demographics group include age, age2, 
education, level of risk aversion, and existing coverage. L Variable is lagged one period. #Omitted variable is Expected conditions: poor. Robust 

and clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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TABLE E2. DECOMPOSITION OF R2
 FOR LEVEL OF PURCHASE, CONDITIONAL ON PURCHASE 

  Demand (MLE) Demand (2 Step) Shapley 

Decomposition 

of Pseudo R2 A 
VARIABLES Coefficient Std. Err. Coefficient Std. Err. 

Household Period-Specific Characteristics:     

Demographics: B     14.08% 

Male 0.0597 (0.0829) 0.0602 (0.0889)  

Dependency Ratio -0.3643 (0.2270) -0.3650 (0.2443)  

Social Groups L 0.0400 (0.0464) 0.0405 (0.0499)  

Financial:     30.85% 

Asset Index L 0.1500 (0.0961) 0.1489 (0.1058)  

Asset Index2 L -0.0046 (0.0235) -0.0042 (0.0258)  

Ln(income) L 0.0821 (0.0592) 0.0821 (0.0631)  

Ln(income)2 L  -0.0038 (0.0050) -0.0038 (0.0053)  

Ratio income livestock L -0.3690*** (0.1289) -0.3705*** (0.1408)  

Livestock Mortality Rate L 0.0066 (0.0053) 0.0066 (0.0057)  

TLU L -0.0001 (0.0001) -0.0001 (0.0001)  

TLU2 L 0.0061 (0.1817) 0.0068 (0.1952)  

Savings (10TLU) L 0.1428 (0.1466) 0.1417 (0.1596)  

HSNP L -0.0684 (0.0932) -0.0674 (0.1004)  

Prospective Adverse Selection:      

Intertemporal:     18.39% 

Expected conditions: Good# -0.3915*** (0.0869) -0.3924*** (0.0947)  

Expected conditions: Normal# -0.3270*** (0.0933) -0.3273*** (0.1005)  

Pre-CZNDVI -0.0037 (0.0047) -0.0037 (0.0051)  

Spatial:     13.84% 

Division Livestock Mortality -0.1804** (0.0829) -0.1798** (0.0897)  

Division Risk 0.1682* (0.0886) 0.1674* (0.0956)  

Division Correlation -0.7921 (0.8214) -0.7894 (0.8859)  

Product Related Characteristics :      

Idiosyncratic Risk & Knowledge:    5.42 % 

Risk -0.1203 (0.0979) -1.1753 (1.1859)  

Correlation -1.1626 (1.0886) -0.2778** (0.1302)  

Extension Game -0.2779** (0.1205) -0.2156* (0.1194)  

Correlation X Game -0.2157* (0.1106) 0.5100** (0.2216)  

Design Risk & Price:     15.68% 

Ln(price) -0.4311** (0.1829) -0.4326** (0.1981)  

Observed Design Error (ODE) 0.0465 (0.1347) 0.0480 (0.1462)  

Ln(price) X ODE -0.0089 (0.0224) -0.0091 (0.0244)  

      

Observations 3,292  547   

F-statistic 4.11  4.49   

P-value (model) 0.00  0.00   

R2   0.2582   

Notes: A The Shapley decomposition is performed on seven groups of variables indicated by the bold labels on the left. A group containing 

existing IBLI coverage, an indicator that the household is in an HSNP targeted community, and the inverse Mills Ratio was also included in the 

regressions; its Shapley contribution was 2.45%.  B Additional covariates in the demographics group include age, age2, education, level of risk 
aversion.  L Variable is lagged one period. #Omitted variable is Expected conditions: poor. Robust and clustered standard errors in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 
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